AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Ligands

Showing 51 to 60 of 599 articles

Clear Filters

Improving drug-target interaction prediction through dual-modality fusion with InteractNet.

Journal of bioinformatics and computational biology
In the drug discovery process, accurate prediction of drug-target interactions is crucial to accelerate the development of new drugs. However, existing methods still face many challenges in dealing with complex biomolecular interactions. To this end,...

A deep learning approach for rational ligand generation with toxicity control via reactive building blocks.

Nature computational science
Deep generative models are gaining attention in the field of de novo drug design. However, the rational design of ligand molecules for novel targets remains challenging, particularly in controlling the properties of the generated molecules. Here, ins...

Interaction-Based Inductive Bias in Graph Neural Networks: Enhancing Protein-Ligand Binding Affinity Predictions From 3D Structures.

IEEE transactions on pattern analysis and machine intelligence
Inductive bias in machine learning (ML) is the set of assumptions describing how a model makes predictions. Different ML-based methods for protein-ligand binding affinity (PLA) prediction have different inductive biases, leading to different levels o...

GeoNet enables the accurate prediction of protein-ligand binding sites through interpretable geometric deep learning.

Structure (London, England : 1993)
The identification of protein binding residues is essential for understanding their functions in vivo. However, it remains a computational challenge to accurately identify binding sites due to the lack of known residue binding patterns. Local residue...

Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites.

Journal of chemical information and modeling
In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. Traditionally, methods like X-ray crystallogra...

AlzyFinder: A Machine-Learning-Driven Platform for Ligand-Based Virtual Screening and Network Pharmacology.

Journal of chemical information and modeling
Alzheimer's disease (AD), a prevalent neurodegenerative disorder, presents significant challenges in drug development due to its multifactorial nature and complex pathophysiology. The AlzyFinder Platform, introduced in this study, addresses these cha...

Molecular tweaking by generative cheminformatics and ligand-protein structures for rational drug discovery.

Bioorganic chemistry
The purpose of this review is two-fold: (1) to summarize artificial intelligence and machine learning approaches and document the role of ligand-protein structures in directing drug discovery; (2) to present examples of drugs from the recent literatu...

Screening of BindingDB database ligands against EGFR, HER2, Estrogen, Progesterone and NF-κB receptors based on machine learning and molecular docking.

Computers in biology and medicine
Breast cancer, the second most prevalent cancer among women worldwide, necessitates the exploration of novel therapeutic approaches. To target the four subgroups of breast cancer "hormone receptor-positive and HER2-negative, hormone receptor-positive...

Towards novel small-molecule inhibitors blocking PD-1/PD-L1 pathway: From explainable machine learning models to molecular dynamics simulation.

International journal of biological macromolecules
Molecular design of small-molecule inhibitors targeting programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway has been recognized as an active research area by the clinical success of cancer immunotherapy. In recent years, usi...

A computational and machine learning approach to identify GPR40-targeting agonists for neurodegenerative disease treatment.

PloS one
The G protein-coupled receptor 40 (GPR40) is known to exert a significant influence on neurogenesis and neurodevelopment within the central nervous system of both humans and rodents. Research findings indicate that the activation of GPR40 by an agoni...