AIMC Topic: Ligands

Clear Filters Showing 51 to 60 of 659 articles

Natural Language Processing Methods for the Study of Protein-Ligand Interactions.

Journal of chemical information and modeling
Natural Language Processing (NLP) has revolutionized the way computers are used to study and interact with human languages and is increasingly influential in the study of protein and ligand binding, which is critical for drug discovery and developmen...

T-ALPHA: A Hierarchical Transformer-Based Deep Neural Network for Protein-Ligand Binding Affinity Prediction with Uncertainty-Aware Self-Learning for Protein-Specific Alignment.

Journal of chemical information and modeling
There is significant interest in targeting disease-causing proteins with small molecule inhibitors to restore healthy cellular states. The ability to accurately predict the binding affinity of small molecules to a protein target in silico enables the...

CL-GNN: Contrastive Learning and Graph Neural Network for Protein-Ligand Binding Affinity Prediction.

Journal of chemical information and modeling
In the realm of drug discovery and design, the accurate prediction of protein-ligand binding affinity is of paramount importance as it underpins the functional interactions within biological systems. This study introduces a novel self-supervised lear...

Protein ligand structure prediction: From empirical to deep learning approaches.

Current opinion in structural biology
Protein-ligand structure prediction methods, aiming to predict the three-dimensional complex structure and binding energy of a compound and target protein, are essential in many structure-based drug discovery pipelines, including virtual screening an...

PPARγ modulator predictor (PGMP_v1): chemical space exploration and computational insights for enhanced type 2 diabetes mellitus management.

Molecular diversity
Peroxisome proliferator-activated receptor gamma (PPARγ) plays a critical role in adipocyte differentiation and enhances insulin sensitivity. In contemporary drug discovery, in silico design strategies offer significant advantages by revealing essent...

The prediction of RNA-small-molecule ligand binding affinity based on geometric deep learning.

Computational biology and chemistry
Small molecule-targeted RNA is an emerging technology that plays a pivotal role in drug discovery and inhibitor design, with widespread applications in disease treatment. Consequently, predicting RNA-small-molecule ligand interactions is crucial. Wit...

Transformer Decoder Learns from a Pretrained Protein Language Model to Generate Ligands with High Affinity.

Journal of chemical information and modeling
The drug discovery process can be significantly accelerated by using deep learning methods to suggest molecules with druglike features and, more importantly, that are good candidates to bind specific proteins of interest. We present a novel deep lear...

DisDock: A Deep Learning Method for Metal Ion-Protein Redocking.

Proteins
The structures of metalloproteins are essential for comprehending their functions and interactions. The breakthrough of AlphaFold has made it possible to predict protein structures with experimental accuracy. However, the type of metal ion that a met...

Active Learning to Select the Most Suitable Reagents and One-Step Organic Chemistry Reactions for Prioritizing Target-Specific Hits from Ultralarge Chemical Spaces.

Journal of chemical information and modeling
Designing chemically novel and synthesizable ligands from the largest possible chemical space is a major issue in modern drug discovery to identify early hits that are easily amenable to medicinal chemistry optimization. Starting from the sole three-...

Targeting protein-ligand neosurfaces with a generalizable deep learning tool.

Nature
Molecular recognition events between proteins drive biological processes in living systems. However, higher levels of mechanistic regulation have emerged, in which protein-protein interactions are conditioned to small molecules. Despite recent advanc...