AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Models, Molecular

Showing 221 to 230 of 628 articles

Clear Filters

Quantum Artificial Neural Network Approach to Derive a Highly Predictive 3D-QSAR Model for Blood-Brain Barrier Passage.

International journal of molecular sciences
A successful passage of the blood-brain barrier (BBB) is an essential prerequisite for the drug molecules designed to act on the central nervous system. The logarithm of blood-brain partitioning (LogBB) has served as an effective index of molecular B...

MANORAA: A machine learning platform to guide protein-ligand design by anchors and influential distances.

Structure (London, England : 1993)
The MANORAA platform uses structure-based approaches to provide information on drug design originally derived from mapping tens of thousands of amino acids on a grid. In-depth analyses of the pockets, frequently occurring atoms, influential distances...

In silico formulation prediction of drug/cyclodextrin/polymer ternary complexes by machine learning and molecular modeling techniques.

Carbohydrate polymers
Ternary cyclodextrin (CD) complexes (drug/CD/polymer) can effectively improve the solubility of water-insoluble drugs with large size than binary CD formulations. However, ternary formulations are screened by a trial-and-error approach, which is labo...

XENet: Using a new graph convolution to accelerate the timeline for protein design on quantum computers.

PLoS computational biology
Graph representations are traditionally used to represent protein structures in sequence design protocols in which the protein backbone conformation is known. This infrequently extends to machine learning projects: existing graph convolution algorith...

When homologous sequences meet structural decoys: Accurate contact prediction by tFold in CASP14-(tFold for CASP14 contact prediction).

Proteins
In this paper, we report our tFold framework's performance on the inter-residue contact prediction task in the 14th Critical Assessment of protein Structure Prediction (CASP14). Our tFold framework seamlessly combines both homologous sequences and st...

Biomolecular simulation based machine learning models accurately predict sites of tolerability to the unnatural amino acid acridonylalanine.

Scientific reports
The incorporation of unnatural amino acids (Uaas) has provided an avenue for novel chemistries to be explored in biological systems. However, the successful application of Uaas is often hampered by site-specific impacts on protein yield and solubilit...

A deep-learning framework for multi-level peptide-protein interaction prediction.

Nature communications
Peptide-protein interactions are involved in various fundamental cellular functions and their identification is crucial for designing efficacious peptide therapeutics. Recently, a number of computational methods have been developed to predict peptide...

T Cell Epitope Prediction and Its Application to Immunotherapy.

Frontiers in immunology
T cells play a crucial role in controlling and driving the immune response with their ability to discriminate peptides derived from healthy as well as pathogenic proteins. In this review, we focus on the currently available computational tools for ep...

Improved 3-D Protein Structure Predictions using Deep ResNet Model.

The protein journal
Protein Structure Prediction (PSP) is considered to be a complicated problem in computational biology. In spite of, the remarkable progress made by the co-evolution-based method in PSP, it is still a challenging and unresolved problem. Recently, alon...

CYPlebrity: Machine learning models for the prediction of inhibitors of cytochrome P450 enzymes.

Bioorganic & medicinal chemistry
The vast majority of approved drugs are metabolized by the five major cytochrome P450 (CYP) isozymes, 1A2, 2C9, 2C19, 2D6 and 3A4. Inhibition of CYP isozymes can cause drug-drug interactions with severe pharmacological and toxicological consequences....