AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Nose Neoplasms

Showing 1 to 4 of 4 articles

Clear Filters

Deep learning model for differentiating nasal cavity masses based on nasal endoscopy images.

BMC medical informatics and decision making
BACKGROUND: Nasal polyps and inverted papillomas often look similar. Clinically, it is difficult to distinguish the masses by endoscopic examination. Therefore, in this study, we aimed to develop a deep learning algorithm for computer-aided diagnosis...

Deep Learning Model for the Differential Diagnosis of Nasal Polyps and Inverted Papilloma by CT Images: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: Nasal polyps (NP) and inverted papilloma (IP) are benign tumors within the nasal cavity, each necessitating distinct treatment approaches. Herein, we investigate the utility of a deep learning (DL) model for distinguishing b...

Machine Learning of Endoscopy Images to Identify, Classify, and Segment Sinonasal Masses.

International forum of allergy & rhinology
BACKGROUND: We developed and assessed the performance of a machine learning model (MLM) to identify, classify, and segment sinonasal masses based on endoscopic appearance.

Deep learning models for differentiating three sinonasal malignancies using multi-sequence MRI.

BMC medical imaging
PURPOSE: To develop MRI-based deep learning (DL) models for distinguishing sinonasal squamous cell carcinoma (SCC), adenoid cystic carcinoma (ACC) and olfactory neuroblastoma (ONB) and to evaluate whether the DL models could improve the diagnostic pe...