PURPOSE: To propose a clinically feasible automatic planning solution for external beam intensity-modulated radiotherapy, including dose prediction via a deep learning and voxel-based optimization strategy.
Delineation of relevant normal tissues is a bottleneck in image-guided precision radiotherapy workflows for small animals. A deep learning (DL) model for automatic contouring using standardized 3D micro cone-beam CT (CBCT) volumes as input is propose...
PURPOSE: To reduce workload and inconsistencies in organ segmentation for radiation treatment planning, we developed and evaluated general and custom autosegmentation models on computed tomography (CT) for three major tumor sites using a well-establi...
PURPOSE: Typically, the current dose prediction models are limited to small amounts of data and require retraining for a specific site, often leading to suboptimal performance. We propose a site-agnostic, three-dimensional dose distribution predictio...
Organs-at-risk contouring is time consuming and labour intensive. Automation by deep learning algorithms would decrease the workload of radiotherapists and technicians considerably. However, the variety of metrics used for the evaluation of deep lear...
Delineating swallowing and chewing structures aids in radiotherapy (RT) treatment planning to limit dysphagia, trismus, and speech dysfunction. We aim to develop an accurate and efficient method to automate this process.CT scans of 242 head and neck ...
Clinical oncology (Royal College of Radiologists (Great Britain))
Jan 5, 2022
Manual segmentation of target structures and organs at risk is a crucial step in the radiotherapy workflow. It has the disadvantages that it can require several hours of clinician time per patient and is prone to inter- and intra-observer variability...
Radiotherapy requires the target area and the organs at risk to be contoured on the CT image of the patient. During the process of organs-at-Risk (OAR) of the chest and abdomen, the doctor needs to contour at each CT image. The delineations of large ...
Journal of applied clinical medical physics
Nov 22, 2021
OBJECTIVES: Because radiotherapy is indispensible for treating cervical cancer, it is critical to accurately and efficiently delineate the radiation targets. We evaluated a deep learning (DL)-based auto-segmentation algorithm for automatic contouring...