AIMC Topic: Plant Proteins

Clear Filters Showing 11 to 20 of 48 articles

Plant-based egg washes for use in baked goods: Machine learning and visual parameter analysis.

Journal of food science
Pea protein is one potential environmentally sustainable way of recreating the functionality of eggs in coatings for baked goods. These coatings are commonly applied to enhance visual properties of baked goods that consumers desire, especially color ...

Fusion of convolutional neural network with XGBoost feature extraction for predicting multi-constituents in corn using near infrared spectroscopy.

Food chemistry
Near-infrared (NIR) spectroscopy has been widely utilized to predict multi-constituents of corn in agriculture. However, directly extracting constituent information from the NIR spectra is challenging due to many issues such as broad absorption band,...

Using AlphaFold Multimer to discover interkingdom protein-protein interactions.

The Plant journal : for cell and molecular biology
Structural prediction by artificial intelligence can be powerful new instruments to discover novel protein-protein interactions, but the community still grapples with the implementation, opportunities and limitations. Here, we discuss and re-analyse ...

Utilizing machine learning and bioinformatics analysis to identify drought-responsive genes affecting yield in foxtail millet.

International journal of biological macromolecules
Drought stress is a major constraint on crop development, potentially causing huge yield losses and threatening global food security. Improving Crop's stress tolerance is usually associated with a yield penalty. One way to balance yield and stress to...

Estimation of wheat protein content and wet gluten content based on fusion of hyperspectral and RGB sensors using machine learning algorithms.

Food chemistry
The protein content (PC) and wet gluten content (WGC) are crucial indicators determining the quality of wheat, playing a pivotal role in evaluating processing and baking performance. Original reflectance (OR), wavelet feature (WF), and color index (C...

ASPTF: A computational tool to predict abiotic stress-responsive transcription factors in plants by employing machine learning algorithms.

Biochimica et biophysica acta. General subjects
BACKGROUND: Abiotic stresses pose serious threat to the growth and yield of crop plants. Several studies suggest that in plants, transcription factors (TFs) are important regulators of gene expression, especially when it comes to coping with abiotic ...

Deep learning-based characterization and redesign of major potato tuber storage protein.

Food chemistry
Potato is one of the most important crops worldwide, to feed a fast-growing population. In addition to providing energy, fiber, vitamins, and minerals, potato storage proteins are considered as one of the most valuable sources of non-animal proteins ...

AlphaFold-Multimer predicts cross-kingdom interactions at the plant-pathogen interface.

Nature communications
Adapted plant pathogens from various microbial kingdoms produce hundreds of unrelated small secreted proteins (SSPs) with elusive roles. Here, we used AlphaFold-Multimer (AFM) to screen 1879 SSPs of seven tomato pathogens for interacting with six def...

Accurate plant pathogen effector protein classification ab initio with deepredeff: an ensemble of convolutional neural networks.

BMC bioinformatics
BACKGROUND: Plant pathogens cause billions of dollars of crop loss every year and are a major threat to global food security. Effector proteins are the tools such pathogens use to infect the cell, predicting effectors de novo from sequence is difficu...

Predicting functions of maize proteins using graph convolutional network.

BMC bioinformatics
BACKGROUND: Maize (Zea mays ssp. mays L.) is the most widely grown and yield crop in the world, as well as an important model organism for fundamental research of the function of genes. The functions of Maize proteins are annotated using the Gene Ont...