AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Pregnancy

Showing 251 to 260 of 1007 articles

Clear Filters

Black-white differences in chronic stress exposures to predict preterm birth: interpretable, race/ethnicity-specific machine learning model.

BMC pregnancy and childbirth
BACKGROUND: Differential exposure to chronic stressors by race/ethnicity may help explain Black-White inequalities in rates of preterm birth. However, researchers have not investigated the cumulative, interactive, and population-specific nature of ch...

A machine learning model to predict spontaneous vaginal delivery failure for term nulliparous women: An observational study.

International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics
OBJECTIVE: This study aims to construct and evaluate a model to predict spontaneous vaginal delivery (SVD) failure in term nulliparous women based on machine learning algorithms.

Development and evaluation of machine learning models for predicting large-for-gestational-age newborns in women exposed to radiation prior to pregnancy.

BMC medical informatics and decision making
INTRODUCTION: The correlation between radiation exposure before pregnancy and abnormal birth weight has been previously proven. However, for large-for-gestational-age (LGA) babies in women exposed to radiation before becoming pregnant, there is no pr...

Predictive analysis on the factors associated with birth Outcomes: A machine learning perspective.

International journal of medical informatics
BACKGROUND: Recent studies reveal that around 1.9 million stillbirths occur annually worldwide, with Sub-Saharan Africa having among the highest cases. Some Sub-Saharan African countries, including Ghana, failed to meet Millennium Development Goal 5 ...

Machine learning predicts the serum PFOA and PFOS levels in pregnant women: Enhancement of fatty acid status on model performance.

Environment international
Human exposure to per- and polyfluoroalkyl substances (PFASs) has received considerable attention, particularly in pregnant women because of their dramatic changes in physiological status and dietary patterns. Predicting internal PFAS exposure in pre...

Machine learning analysis with population data for prepregnancy and perinatal risk factors for the neurodevelopmental delay of offspring.

Scientific reports
Neurodevelopmental disorders (NDD) in offspring are associated with a complex combination of pre-and postnatal factors. This study uses machine learning and population data to evaluate the association between prepregnancy or perinatal risk factors an...

Prediction of post-delivery hemoglobin levels with machine learning algorithms.

Scientific reports
Predicting postpartum hemorrhage (PPH) before delivery is crucial for enhancing patient outcomes, enabling timely transfer and implementation of prophylactic therapies. We attempted to utilize machine learning (ML) using basic pre-labor clinical data...

Diagnosis of placenta accreta spectrum using ultrasound texture feature fusion and machine learning.

Computers in biology and medicine
INTRODUCTION: Placenta accreta spectrum (PAS) is an obstetric disorder arising from the abnormal adherence of the placenta to the uterine wall, often leading to life-threatening complications including postpartum hemorrhage. Despite its significance,...

Machine learning, advanced data analysis, and a role in pregnancy care? How can we help improve preeclampsia outcomes?

Pregnancy hypertension
The value of machine learning capacity in maternal health, and in particular prediction of preeclampsia will only be realised when there are high quality clinical data provided, representative populations included, different health systems and models...