PURPOSE: This study aimed to evaluate Artificial Neural Network (ANN) modeling to estimate the significant dose length product (DLP) value during the abdominal CT examinations for quality assurance in a retrospective, cross-sectional study.
OBJECTIVES: To evaluate a novel deep learning image reconstruction (DLIR) technique for dual-energy CT (DECT) derived virtual monoenergetic (VM) images compared to adaptive statistical iterative reconstruction (ASIR-V) in low kiloelectron volt (keV) ...
OBJECTIVES: To assess the impact of a new artificial intelligence deep-learning reconstruction (Precise Image; AI-DLR) algorithm on image quality against a hybrid iterative reconstruction (IR) algorithm in abdominal CT for different clinical indicati...
To compare the quality of CT images of the lung reconstructed using deep learning-based reconstruction (True Fidelity Image: TFI ™; GE Healthcare) to filtered back projection (FBP), and to determine the minimum tube current-time product in TFI withou...
OBJECTIVE: Ultra-high-resolution CT (UHR-CT), which can be applied normal resolution (NR), high-resolution (HR), and super-high-resolution (SHR) modes, has become available as in conjunction with multi-detector CT (MDCT). Moreover, deep learning reco...
While simulated low-dose CT images and phantom studies cannot fully approximate subjective and objective effects of deep learning (DL) denoising on image quality, live animal models may afford this assessment. This study is to investigate the potenti...
OBJECTIVES: To investigate whether deep learning reconstruction (DLR) could keep image quality and reduce radiation dose in interstitial lung disease (ILD) patients compared with HRCT reconstructed with hybrid iterative reconstruction (hybrid-IR).
BACKGROUND: Recently, computed tomography (CT) manufacturers have developed deep-learning-based reconstruction algorithms to compensate for the limitations of iterative reconstruction (IR) algorithms, such as image smoothing and the spatial resolutio...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.