PURPOSE: In contrast-enhanced abdominopelvic CT (CE-APCT) for oncologic follow-up, ultrahigh-resolution CT (UHRCT) may improve depiction of fine lesions and low-dose scans are desirable for minimizing the potential adverse effects by ionizing radiati...
OBJECTIVE: To determine the difference in CT values and image quality of abdominal CT images reconstructed by filtered back-projection (FBP), hybrid iterative reconstruction (IR), and deep learning reconstruction (DLR).
OBJECTIVES: The lung nodule volume determined by CT is used for nodule diagnoses and monitoring tumor responses to therapy. Increased image noise on low-dose CT degrades the measurement accuracy of the lung nodule volume. We compared the volumetric a...
PURPOSE: Noise power spectrum (NPS) is a commonly used performance metric to evaluate noise-reduction techniques (NRT) in imaging systems. The images reconstructed with and without an NRT can be compared via their NPS to better understand the NRT's e...
Computer methods and programs in biomedicine
Dec 5, 2021
BACKGROUND AND OBJECTIVE: Computed Tomography (CT) has become an important clinical imaging modality, as well as the leading source of radiation dose from medical imaging procedures. Modern CT exams are usually led by two quick orthogonal localizatio...
PURPOSE: Conventional model observers (MO) in CT are often limited to a uniform background or varying background that is random and can be modeled in an analytical form. It is unclear if these conventional MOs can be readily generalized to predict hu...
OBJECTIVES: To compare the overall image quality and detectability of significant (malignant and pre-malignant) liver lesions of low-dose liver CT (LDCT, 33.3% dose) using deep learning denoising (DLD) to standard-dose CT (SDCT, 100% dose) using mode...
Concerns over need for CT radiation dose optimization and reduction led to improved scanner efficiency and introduction of several reconstruction techniques and image processing-based software. The latest technologies use artificial intelligence (AI)...
PURPOSE: To assess the image quality (IQ) of low tube voltage coronary CT angiography (CCTA) images reconstructed with deep learning image reconstruction (DLIR).
PURPOSE: To evaluate the image quality of ultra-high-resolution CT (U-HRCT) in the comparison among four different reconstruction methods, focusing on the gastric wall structure, and to compare the conspicuity of a three-layered structure of the gast...