AIMC Topic: Pulmonary Emphysema

Clear Filters Showing 1 to 10 of 30 articles

Effect of emphysema on AI software and human reader performance in lung nodule detection from low-dose chest CT.

European radiology experimental
BACKGROUND: Emphysema influences the appearance of lung tissue in computed tomography (CT). We evaluated whether this affects lung nodule detection by artificial intelligence (AI) and human readers (HR).

Explicate molecular landscape of combined pulmonary fibrosis and emphysema through explainable artificial intelligence: a comprehensive analysis of ILD and COPD interactions using RNA from whole lung homogenates.

Medical & biological engineering & computing
Combined pulmonary fibrosis and emphysema (CPFE) presents a unique challenge in respiratory disorders, merging features of interstitial lung disease (ILD) and chronic obstructive pulmonary disease (COPD). Using the random forest algorithm, our study ...

Machine Learning and CT Texture Features in Ex-smokers with no CT Evidence of Emphysema and Mildly Abnormal Diffusing Capacity.

Academic radiology
RATIONALE AND OBJECTIVES: Ex-smokers without spirometry or CT evidence of chronic obstructive pulmonary disease (COPD) but with mildly abnormal diffusing capacity of the lungs for carbon monoxide (DL) are at higher risk of developing COPD. It remains...

Artificial Intelligence-Based Emphysema Quantification in Routine Chest Computed Tomography: Correlation With Spirometry and Visual Emphysema Grading.

Journal of computer assisted tomography
OBJECTIVE: The aim of the study is to assess the correlation between artificial intelligence (AI)-based low attenuation volume percentage (LAV%) with forced expiratory volume in the first second to forced vital capacity (FEV1/FVC) and visual emphysem...

Deep learning parametric response mapping from inspiratory chest CT scans: a new approach for small airway disease screening.

Respiratory research
OBJECTIVES: Parametric response mapping (PRM) enables the evaluation of small airway disease (SAD) at the voxel level, but requires both inspiratory and expiratory chest CT scans. We hypothesize that deep learning PRM from inspiratory chest CT scans ...

Evaluation of emphysema on thoracic low-dose CTs through attention-based multiple instance deep learning.

Scientific reports
In addition to lung cancer, other thoracic abnormalities, such as emphysema, can be visualized within low-dose CT scans that were initially obtained in cancer screening programs, and thus, opportunistic evaluation of these diseases may be highly valu...

Explainable emphysema detection on chest radiographs with deep learning.

PloS one
We propose a deep learning system to automatically detect four explainable emphysema signs on frontal and lateral chest radiographs. Frontal and lateral chest radiographs from 3000 studies were retrospectively collected. Two radiologists annotated th...

Emphysema Quantification Using Ultra-Low-Dose Chest CT: Efficacy of Deep Learning-Based Image Reconstruction.

Medicina (Kaunas, Lithuania)
Background and Objectives: Although reducing the radiation dose level is important during diagnostic computed tomography (CT) applications, effective image quality enhancement strategies are crucial to compensate for the degradation that is caused by...

Emphysema Progression at CT by Deep Learning Predicts Functional Impairment and Mortality: Results from the COPDGene Study.

Radiology
Background Visual assessment remains the standard for evaluating emphysema at CT; however, it is time consuming, is subjective, requires training, and is affected by variability that may limit sensitivity to longitudinal change. Purpose To evaluate t...