Nowadays, Artificial Intelligence (AI) and its subfields, Machine Learning (ML) and Deep Learning (DL), are used for a variety of medical applications. It can help clinicians track the patient's illness cycle, assist with diagnosis, and offer appropr...
Retinal fundus photographs can be used to detect a range of retinal conditions. Here we show that deep-learning models trained instead on external photographs of the eyes can be used to detect diabetic retinopathy (DR), diabetic macular oedema and po...
PURPOSE: To develop a deep learning-based framework to improve the image quality of optical coherence tomography (OCT) and evaluate its image enhancement effect with the traditional image averaging method from a clinical perspective.
OBJECTIVE: To assess the ability of a deep learning model to distinguish between diabetic retinopathy (DR), sickle cell retinopathy (SCR), retinal vein occlusions (RVOs) and healthy eyes using ultra-widefield colour fundus photography (UWF-CFP).
Syndromic retinal diseases (SRDs) are a group of complex inherited systemic disorders, with challenging molecular underpinnings and clinical management. Our main goal is to improve clinical and molecular SRDs diagnosis, by applying a structured pheno...
Retinal fundus diseases can lead to irreversible visual impairment without timely diagnoses and appropriate treatments. Single disease-based deep learning algorithms had been developed for the detection of diabetic retinopathy, age-related macular de...
OBJECTIVES: To demonstrate the feasibility of a deep learning-based vascular segmentation tool for UWFA and evaluate its ability to automatically identify quality-optimized phase-specific images.
An efficient automatic decision support system for detection of retinal disorders is important and is the need of the hour. Optical Coherence Tomography (OCT) is the current imaging modality for the early detection of retinal disorders non-invasively...
Experimental biology and medicine (Maywood, N.J.)
Jul 19, 2021
Optical coherence tomography angiography (OCTA) offers a noninvasive label-free solution for imaging retinal vasculatures at the capillary level resolution. In principle, improved resolution implies a better chance to reveal subtle microvascular dist...