AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Choroidal Neovascularization

Showing 1 to 10 of 24 articles

Clear Filters

Diagnosis of retinal disorders from Optical Coherence Tomography images using CNN.

PloS one
An efficient automatic decision support system for detection of retinal disorders is important and is the need of the hour. Optical Coherence Tomography (OCT) is the current imaging modality for the early detection of retinal disorders non-invasively...

Multimodal deep learning with feature level fusion for identification of choroidal neovascularization activity in age-related macular degeneration.

Acta ophthalmologica
PURPOSE: This study aimed to determine the efficacy of a multimodal deep learning (DL) model using optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) images for the assessment of choroidal neovascularization (CNV) ...

A multimodal deep learning system to distinguish late stages of AMD and to compare expert vs. AI ocular biomarkers.

Scientific reports
Within the next 1.5 decades, 1 in 7 U.S. adults is anticipated to suffer from age-related macular degeneration (AMD), a degenerative retinal disease which leads to blindness if untreated. Optical coherence tomography angiography (OCTA) has become a p...

Diagnosis of Polypoidal Choroidal Vasculopathy From Fluorescein Angiography Using Deep Learning.

Translational vision science & technology
PURPOSE: To differentiate polypoidal choroidal vasculopathy (PCV) from choroidal neovascularization (CNV) and to determine the extent of PCV from fluorescein angiography (FA) using attention-based deep learning networks.

Segmentation of macular neovascularization and leakage in fluorescein angiography images in neovascular age-related macular degeneration using deep learning.

Eye (London, England)
BACKGROUND/OBJECTIVES: We aim to develop an objective fully automated Artificial intelligence (AI) algorithm for MNV lesion size and leakage area segmentation on fluorescein angiography (FA) in patients with neovascular age-related macular degenerati...

Deep Learning for Diagnosing and Segmenting Choroidal Neovascularization in OCT Angiography in a Large Real-World Data Set.

Translational vision science & technology
PURPOSE: To diagnose and segment choroidal neovascularization (CNV) in a real-world multicenter clinical OCT angiography (OCTA) data set using deep learning.

A hybrid model for the detection of retinal disorders using artificial intelligence techniques.

Biomedical physics & engineering express
The prevalence of vision impairment is increasing at an alarming rate. The goal of the study was to create an automated method that uses optical coherence tomography (OCT) to classify retinal disorders into four categories: choroidal neovascularizati...

Linking disease activity with optical coherence tomography angiography in neovascular age related macular degeneration using artificial intelligence.

Scientific reports
To investigate quantitative associations between AI-assessed disease activity and optical coherence tomography angiography (OCTA)-derived parameters in patients with neovascular age-related macular degeneration (nAMD) undergoing anti-VEGF therapy. OC...

Self-supervised based clustering for retinal optical coherence tomography images.

Eye (London, England)
BACKGROUND: In response to the inadequacy of manual analysis in meeting the rising demand for retinal optical coherence tomography (OCT) images, a self-supervised learning-based clustering model was implemented.