AIMC Topic: Sequence Analysis, Protein

Clear Filters Showing 161 to 170 of 262 articles

MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs.

Bioinformatics (Oxford, England)
UNLABELLED: S-sulfenylation (S-sulphenylation, or sulfenic acid), the covalent attachment of S-hydroxyl (-SOH) to cysteine thiol, plays a significant role in redox regulation of protein functions. Although sulfenic acid is transient and labile, most ...

DNA-binding protein prediction using plant specific support vector machines: validation and application of a new genome annotation tool.

Nucleic acids research
There are currently 151 plants with draft genomes available but levels of functional annotation for putative protein products are low. Therefore, accurate computational predictions are essential to annotate genomes in the first instance, and to provi...

Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning.

Bioinformatics (Oxford, England)
MOTIVATION: Protein contact prediction is important for protein structure and functional study. Both evolutionary coupling (EC) analysis and supervised machine learning methods have been developed, making use of different information sources. However...

GoFDR: A sequence alignment based method for predicting protein functions.

Methods (San Diego, Calif.)
In this study, we developed a method named GoFDR for predicting Gene Ontology (GO)-based protein functions. The input for GoFDR is simply a query sequence-based multiple sequence alignment (MSA) produced by PSI-BLAST. For each GO term annotated to th...

MetazSecKB: the human and animal secretome and subcellular proteome knowledgebase.

Database : the journal of biological databases and curation
The subcellular location of a protein is a key factor in determining the molecular function of the protein in an organism. MetazSecKB is a secretome and subcellular proteome knowledgebase specifically designed for metazoan, i.e. human and animals. Th...

Identification of Heat Shock Protein families and J-protein types by incorporating Dipeptide Composition into Chou's general PseAAC.

Computer methods and programs in biomedicine
Heat Shock Proteins (HSPs) are the substantial ingredients for cell growth and viability, which are found in all living organisms. HSPs manage the process of folding and unfolding of proteins, the quality of newly synthesized proteins and protecting ...

TPpred3 detects and discriminates mitochondrial and chloroplastic targeting peptides in eukaryotic proteins.

Bioinformatics (Oxford, England)
MOTIVATION: Molecular recognition of N-terminal targeting peptides is the most common mechanism controlling the import of nuclear-encoded proteins into mitochondria and chloroplasts. When experimental information is lacking, computational methods can...

All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences.

Proceedings of the National Academy of Sciences of the United States of America
Transmembrane β-barrels (TMBs) carry out major functions in substrate transport and protein biogenesis but experimental determination of their 3D structure is challenging. Encouraged by successful de novo 3D structure prediction of globular and α-hel...

Woods: A fast and accurate functional annotator and classifier of genomic and metagenomic sequences.

Genomics
Functional annotation of the gigantic metagenomic data is one of the major time-consuming and computationally demanding tasks, which is currently a bottleneck for the efficient analysis. The commonly used homology-based methods to functionally annota...

Machine learning assisted design of highly active peptides for drug discovery.

PLoS computational biology
The discovery of peptides possessing high biological activity is very challenging due to the enormous diversity for which only a minority have the desired properties. To lower cost and reduce the time to obtain promising peptides, machine learning ap...