AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Sequence Analysis, Protein

Showing 161 to 170 of 254 articles

Clear Filters

Identification of Heat Shock Protein families and J-protein types by incorporating Dipeptide Composition into Chou's general PseAAC.

Computer methods and programs in biomedicine
Heat Shock Proteins (HSPs) are the substantial ingredients for cell growth and viability, which are found in all living organisms. HSPs manage the process of folding and unfolding of proteins, the quality of newly synthesized proteins and protecting ...

TPpred3 detects and discriminates mitochondrial and chloroplastic targeting peptides in eukaryotic proteins.

Bioinformatics (Oxford, England)
MOTIVATION: Molecular recognition of N-terminal targeting peptides is the most common mechanism controlling the import of nuclear-encoded proteins into mitochondria and chloroplasts. When experimental information is lacking, computational methods can...

All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences.

Proceedings of the National Academy of Sciences of the United States of America
Transmembrane β-barrels (TMBs) carry out major functions in substrate transport and protein biogenesis but experimental determination of their 3D structure is challenging. Encouraged by successful de novo 3D structure prediction of globular and α-hel...

Woods: A fast and accurate functional annotator and classifier of genomic and metagenomic sequences.

Genomics
Functional annotation of the gigantic metagenomic data is one of the major time-consuming and computationally demanding tasks, which is currently a bottleneck for the efficient analysis. The commonly used homology-based methods to functionally annota...

Machine learning assisted design of highly active peptides for drug discovery.

PLoS computational biology
The discovery of peptides possessing high biological activity is very challenging due to the enormous diversity for which only a minority have the desired properties. To lower cost and reduce the time to obtain promising peptides, machine learning ap...

KeBABS: an R package for kernel-based analysis of biological sequences.

Bioinformatics (Oxford, England)
KeBABS provides a powerful, flexible and easy to use framework for KE: rnel- B: ased A: nalysis of B: iological S: equences in R. It includes efficient implementations of the most important sequence kernels, also including variants that allow for tak...

Prediction of cancer proteins by integrating protein interaction, domain frequency, and domain interaction data using machine learning algorithms.

BioMed research international
Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of...

Prediction and analysis of quorum sensing peptides based on sequence features.

PloS one
Quorum sensing peptides (QSPs) are the signaling molecules used by the Gram-positive bacteria in orchestrating cell-to-cell communication. In spite of their enormous importance in signaling process, their detailed bioinformatics analysis is lacking. ...

Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation.

BMC systems biology
BACKGROUND: DNA-binding proteins play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Identification of DNA-binding proteins is one of the major challenges in the field of genome...

More challenges for machine-learning protein interactions.

Bioinformatics (Oxford, England)
MOTIVATION: Machine learning may be the most popular computational tool in molecular biology. Providing sustained performance estimates is challenging. The standard cross-validation protocols usually fail in biology. Park and Marcotte found that even...