AIMC Topic: Signal Processing, Computer-Assisted

Clear Filters Showing 21 to 30 of 1951 articles

Enhanced schizophrenia detection using multichannel EEG and CAOA-RST-based feature selection.

Scientific reports
Schizophrenia is a mental disorder characterized by hallucinations, delusions, disorganized thinking and behavior, and inappropriate affect. Early and accurate diagnosis of schizophrenia remains a challenge due to the disorder's complex nature and th...

Towards decoding motor imagery from EEG signal using optimized back propagation neural network with honey badger algorithm.

Scientific reports
The importance of using Brain-Computer Interface (BCI) systems based on electro encephalography (EEG) signal to decode Motor Imagery(MI) is very impressive because of the possibility of analyzing and translating brain signals related to movement inte...

Schizophrenia detection from electroencephalogram signals using image encoding and wrapper-based deep feature selection approach.

Scientific reports
Schizophrenia is a persistent and serious mental illness that leads to distortions in cognition, perception, emotions, speech, self-awareness, and actions. Affecting about 1% of people worldwide, schizophrenia usually emerges in late adolescence or e...

Ensemble learning for biomedical signal classification: a high-accuracy framework using spectrograms from percussion and palpation.

Scientific reports
Accurate classification of biomedical signals is crucial for advancing non-invasive diagnostic methods, particularly for identifying gastrointestinal and related medical conditions where conventional techniques often fall short. An ensemble learning ...

Cuff-less blood pressure monitoring via PPG signals using a hybrid CNN-BiLSTM deep learning model with attention mechanism.

Scientific reports
Blood pressure (BP) serves as a fundamental indicator of cardiovascular health, measuring the force exerted by circulating blood against arterial walls during each heartbeat. This paper introduces an advanced deep learning framework for precise, non-...

A novel dual-branch network for comprehensive spatiotemporal information integration for EEG-based epileptic seizure detection.

PloS one
Epilepsy is a neurological disorder characterized by recurrent seizures caused by abnormal brain activity, which can severely affects people's normal lives. To improve the lives of these patients, it is necessary to develop accurate methods to predic...

Epilepsy Prediction via Time-Frequency Features and Multi-Scale Hybrid Neural Networks.

Journal of medical systems
The prediction of epileptic seizures heavily depends on the precise embedding and classification of complex, multi-dimensional electroencephalogram (EEG) signals. Due to individual variability and the dynamic non-linear nature of EEG signals, extract...

Recognition of common shortwave protocols and their subcarrier modulations based on multi-scale convolutional GRU.

PloS one
Shortwave communication plays a vital role in disaster relief and remote communications due to its long-range capabilities and resilience to interference. However, challenges such as multipath propagation, frequency-selective fading, and low signal-t...

Arrhythmia classification based on multi-input convolutional neural network with attention mechanism.

PloS one
Arrhythmia is a prevalent cardiac disorder that can lead to severe complications such as stroke and cardiac arrest. While deep learning has advanced automated ECG analysis, challenges remain in accurately classifying arrhythmias due to signal variabi...

Adaptive weighted dual MAML: Proposing a novel method for the automated diagnosis of partial sleep deprivation.

PloS one
INTRODUCTION: Sleep disorders significantly disrupt normal sleep patterns and pose serious health risks. Traditional diagnostic methods, such as questionnaires and polysomnography, often require extensive time and are susceptible to errors. This high...