AIMC Topic: Signal Processing, Computer-Assisted

Clear Filters Showing 51 to 60 of 1919 articles

sEMG-Based Gesture Recognition via Multi-Feature Fusion Network.

IEEE journal of biomedical and health informatics
The sparse surface electromyography-based gesture recognition suffers from the problems of feature information not richness and poor generalization to small sample data. Therefore, a multi-feature fusion network (MFF-Net) model is proposed in this pa...

Decoding SSVEP Via Calibration-Free TFA-Net: A Novel Network Using Time-Frequency Features.

IEEE journal of biomedical and health informatics
Brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) signals offer high information transfer rates and non-invasive brain-to-device connectivity, making them highly practical. In recent years, deep learning technique...

Ankle Kinematics Estimation Using Artificial Neural Network and Multimodal IMU Data.

IEEE journal of biomedical and health informatics
Inertial measurement units (IMUs) have become attractive for monitoring joint kinematics due to their portability and versatility. However, their limited accuracy, inability to analyze data in real-time, and complex data fusion algorithms requiring p...

A Hybrid Artificial Intelligence System for Automated EEG Background Analysis and Report Generation.

IEEE journal of biomedical and health informatics
Electroencephalography (EEG) plays a crucial role in the diagnosis of various neurological disorders. However, small hospitals and clinics often lack advanced EEG signal analysis systems and are prone to misinterpretation in manual EEG reading. This ...

TrustEMG-Net: Using Representation-Masking Transformer With U-Net for Surface Electromyography Enhancement.

IEEE journal of biomedical and health informatics
Surface electromyography (sEMG) is a widely employed bio-signal that captures human muscle activity via electrodes placed on the skin. Several studies have proposed methods to remove sEMG contaminants, as non-invasive measurements render sEMG suscept...

DC-ASTGCN: EEG Emotion Recognition Based on Fusion Deep Convolutional and Adaptive Spatio-Temporal Graph Convolutional Networks.

IEEE journal of biomedical and health informatics
Thanks to advancements in artificial intelligence and brain-computer interface (BCI) research, there has been increasing attention towards emotion recognition techniques based on electroencephalogram (EEG) recently. The complexity of EEG data poses a...

Prediction of IUGR condition at birth by means of CTG recordings and a ResNet model.

Computers in biology and medicine
OBJECTIVE: Sub-optimal uterine-placental perfusion and fetal nutrition can lead to intrauterine growth restriction (IUGR), also called fetal growth restriction (FGR). Antenatal cardiotocography (CTG) can aid in the early detection of IUGR. Reliably d...

An Energy-Efficient Configurable 1-D CNN-Based Multi-Lead ECG Classification Coprocessor for Wearable Cardiac Monitoring Devices.

IEEE transactions on biomedical circuits and systems
Many electrocardiogram (ECG) processors have been widely used for cardiac monitoring. However, most of them have relatively low energy efficiency, and lack configurability in classification leads number and inference algorithm models. A multi-lead EC...

Hardware Optimization and Implementation of a 16-Channel Neural Tree Classifier for On-Chip Closed-Loop Neuromodulation.

IEEE transactions on biomedical circuits and systems
This work presents the development of on-chip machine learning (ML) classifiers for implantable neuromodulation system-on-chips (SoCs), aimed at detecting epileptic seizures for closed-loop neuromodulation applications. Tree-based classifiers have ga...

Parallel convolutional neural networks for non-invasive cardiac hemodynamic estimation: integrating uncalibrated PPG signals with nonlinear feature analysis.

Physiological measurement
Understanding cardiac hemodynamic status (CHS) is essential for accurate cardiovascular health assessment, as it is governed by key parameters such as cardiac output (CO), systemic vascular resistance (SVR), and arterial compliance (AC). This study a...