OBJECTIVE: Patients with dilated cardiomyopathy (DCM) and severely reduced left ventricular ejection fractions (LVEFs) are at very high risks of experiencing adverse cardiac events. A machine learning (ML) method could enable more effective risk stra...
BACKGROUND: Mortality remains unacceptably high in patients with heart failure and reduced left ventricular ejection fraction (LVEF) despite advances in therapeutics. We hypothesised that a novel artificial intelligence approach could better assess m...
BACKGROUND: We aimed to create a novel model using a deep learning method to estimate stroke volume variation (SVV), a widely used predictor of fluid responsiveness, from arterial blood pressure waveform (ABPW).
Journal of medical ultrasonics (2001)
Jul 28, 2021
Despite recent advances in imaging for myocardial deformation, left ventricular ejection fraction (LVEF) is still the most important index for systolic function in daily practice. Its role in multiple fields (e.g., valvular heart disease, myocardial ...
The presence of left ventricular systolic dysfunction (LVSD) alters clinical management and prognosis in most acute and chronic cardiovascular conditions. While transthoracic echocardiography (TTE) remains the most common diagnostic tool to screen fo...
The international journal of cardiovascular imaging
Jun 29, 2021
Deep learning algorithms for left ventricle (LV) segmentation are prone to bias towards the training dataset. This study assesses sex- and age-dependent performance differences when using deep learning for automatic LV segmentation. Retrospective ana...
American journal of physiology. Heart and circulatory physiology
Jun 25, 2021
Deep learning (DL) has been applied for automatic left ventricle (LV) ejection fraction (EF) measurement, but the diagnostic performance was rarely evaluated for various phenotypes of heart disease. This study aims to evaluate a new DL algorithm for ...
Biomedizinische Technik. Biomedical engineering
Jun 24, 2021
In impedance cardiography (ICG), the detection of dZ/dt signal (ICG) characteristic points, especially the X point, is a crucial step for the calculation of hemodynamic parameters such as stroke volume (SV) and cardiac output (CO). Unfortunately, for...
BACKGROUND: We have recently tested an automated machine-learning algorithm that quantifies left ventricular (LV) ejection fraction (EF) from guidelines-recommended apical views. However, in the point-of-care (POC) setting, apical 2-chamber views are...