Journal of the American Heart Association
Feb 19, 2025
BACKGROUND: Left ventricular diastolic dysfunction (LVDD) predicts mortality in patients in cardiac intensive care units. An artificial intelligence enhanced ECG (AIECG) algorithm can predict LVDD and mortality in general populations but has not been...
Left ventricular systolic dysfunction (LVSD) and its severity are correlated with the prognosis of cardiovascular diseases. Early detection and monitoring of LVSD are of utmost importance. Left ventricular ejection fraction (LVEF) is an essential ind...
Journal of the American Heart Association
Nov 4, 2024
BACKGROUND: Early detection of left and right ventricular systolic dysfunction (LVSD and RVSD respectively) in children can lead to intervention to reduce morbidity and death. Existing artificial intelligence algorithms can identify LVSD and RVSD in ...
Left ventricular (LV) global longitudinal strain (LVGLS) is versatile; however, it is difficult to obtain. We evaluated the potential of an artificial intelligence (AI)-generated electrocardiography score for LVGLS estimation (ECG-GLS score) to diagn...
BACKGROUND: Reduced left ventricular ejection fraction (LVEF) initiates heart failure, and promptly identifying low ejection fraction is crucial for managing progression and averting mortality. In this study we developed an artificial intelligence-en...
Circulation. Cardiovascular quality and outcomes
Sep 2, 2024
BACKGROUND: Risk stratification strategies for cancer therapeutics-related cardiac dysfunction (CTRCD) rely on serial monitoring by specialized imaging, limiting their scalability. We aimed to examine an application of artificial intelligence (AI) to...
Nigeria has the highest reported incidence of peripartum cardiomyopathy worldwide. This open-label, pragmatic clinical trial randomized pregnant and postpartum women to usual care or artificial intelligence (AI)-guided screening to assess its impact ...
The generalization of deep neural network algorithms to a broader population is an important challenge in the medical field. We aimed to apply self-supervised learning using masked autoencoders (MAEs) to improve the performance of the 12-lead electro...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.