Deep learning (DL) represents a paradigm-shifting, burgeoning field of research with emerging clinical applications in optometry. Unlike traditional programming, which relies on human-set specific rules, DL works by exposing the algorithm to a large ...
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Although deep learning methods have been proposed to diagnose POAG, it remains challenging to develop a robust and explainable algorithm to automatically facil...
BACKGROUND: Homonymous visual field (VF) defects are usually an indicator of serious intracranial pathology but may be subtle and difficult to detect. Artificial intelligence (AI) models could play a key role in simplifying the detection of these def...
PURPOSE: To estimate central 10-degree visual field (VF) map from spectral-domain optical coherence tomography (SD-OCT) retinal nerve fiber layer thickness (RNFL) measurements in glaucoma with artificial intelligence.
Close monitoring of central visual field (VF) defects with 10-2 VF helps prevent blindness in glaucoma. We aimed to develop a deep learning model to predict 10-2 VF from wide-field swept-source optical coherence tomography (SS-OCT) images. Macular ga...
Glaucoma is a leading cause of irreversible blindness, and its worsening is most often monitored with visual field (VF) testing. Deep learning models (DLM) may help identify VF worsening consistently and reproducibly. In this study, we developed and ...
PURPOSE: To develop deep learning (DL) models estimating the central visual field (VF) from optical coherence tomography angiography (OCTA) vessel density (VD) measurements.
BACKGROUND: Despite, the potential clinical utility of 60-4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial contour on field defects. The purpose of this study was to design and test an a...
AIM: We tested the hypothesis that visual field (VF) progression can be predicted with a deep learning model based on longitudinal pairs of optic disc photographs (ODP) acquired at earlier time points during follow-up.