Close monitoring of central visual field (VF) defects with 10-2 VF helps prevent blindness in glaucoma. We aimed to develop a deep learning model to predict 10-2 VF from wide-field swept-source optical coherence tomography (SS-OCT) images. Macular ga...
PURPOSE: To estimate central 10-degree visual field (VF) map from spectral-domain optical coherence tomography (SD-OCT) retinal nerve fiber layer thickness (RNFL) measurements in glaucoma with artificial intelligence.
Deep learning (DL) represents a paradigm-shifting, burgeoning field of research with emerging clinical applications in optometry. Unlike traditional programming, which relies on human-set specific rules, DL works by exposing the algorithm to a large ...
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Although deep learning methods have been proposed to diagnose POAG, it remains challenging to develop a robust and explainable algorithm to automatically facil...
BACKGROUND: Homonymous visual field (VF) defects are usually an indicator of serious intracranial pathology but may be subtle and difficult to detect. Artificial intelligence (AI) models could play a key role in simplifying the detection of these def...
PURPOSE: To develop and validate a deep learning (DL) system for predicting each point on visual fields (VFs) from disc and OCT imaging and derive a structure-function mapping.
PURPOSE: The currently used measures of retinal function are limited by being subjective, nonlocalized, or taxing for patients. To address these limitations, we sought to develop and evaluate a deep learning (DL) method to automatically predict the f...
PURPOSE: To develop and validate a deep learning method of predicting visual function from spectral domain optical coherence tomography (SD-OCT)-derived retinal nerve fiber layer thickness (RNFLT) measurements and corresponding SD-OCT images.
In recent years, research in artificial intelligence (AI) has experienced an unprecedented surge in the field of ophthalmology, in particular glaucoma. The diagnosis and follow-up of glaucoma is complex and relies on a body of clinical evidence and a...
PURPOSE: To develop and validate a multimodal artificial intelligence algorithm, FusionNet, using the pattern deviation probability plots from visual field (VF) reports and circular peripapillary OCT scans to detect glaucomatous optic neuropathy (GON...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.