AIMC Topic: Visual Field Tests

Clear Filters Showing 21 to 30 of 76 articles

Deep learning approaches to predict 10-2 visual field from wide-field swept-source optical coherence tomography en face images in glaucoma.

Scientific reports
Close monitoring of central visual field (VF) defects with 10-2 VF helps prevent blindness in glaucoma. We aimed to develop a deep learning model to predict 10-2 VF from wide-field swept-source optical coherence tomography (SS-OCT) images. Macular ga...

Deep Learning Estimation of 10-2 Visual Field Map Based on Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements.

American journal of ophthalmology
PURPOSE: To estimate central 10-degree visual field (VF) map from spectral-domain optical coherence tomography (SD-OCT) retinal nerve fiber layer thickness (RNFL) measurements in glaucoma with artificial intelligence.

Deep learning: applications in retinal and optic nerve diseases.

Clinical & experimental optometry
Deep learning (DL) represents a paradigm-shifting, burgeoning field of research with emerging clinical applications in optometry. Unlike traditional programming, which relies on human-set specific rules, DL works by exposing the algorithm to a large ...

Automated diagnosing primary open-angle glaucoma from fundus image by simulating human's grading with deep learning.

Scientific reports
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Although deep learning methods have been proposed to diagnose POAG, it remains challenging to develop a robust and explainable algorithm to automatically facil...

Deep learning model to identify homonymous defects on automated perimetry.

The British journal of ophthalmology
BACKGROUND: Homonymous visual field (VF) defects are usually an indicator of serious intracranial pathology but may be subtle and difficult to detect. Artificial intelligence (AI) models could play a key role in simplifying the detection of these def...

Policy-Driven, Multimodal Deep Learning for Predicting Visual Fields from the Optic Disc and OCT Imaging.

Ophthalmology
PURPOSE: To develop and validate a deep learning (DL) system for predicting each point on visual fields (VFs) from disc and OCT imaging and derive a structure-function mapping.

Linking Function and Structure with ReSensNet: Predicting Retinal Sensitivity from OCT using Deep Learning.

Ophthalmology. Retina
PURPOSE: The currently used measures of retinal function are limited by being subjective, nonlocalized, or taxing for patients. To address these limitations, we sought to develop and evaluate a deep learning (DL) method to automatically predict the f...

Predicting Visual Fields From Optical Coherence Tomography via an Ensemble of Deep Representation Learners.

American journal of ophthalmology
PURPOSE: To develop and validate a deep learning method of predicting visual function from spectral domain optical coherence tomography (SD-OCT)-derived retinal nerve fiber layer thickness (RNFLT) measurements and corresponding SD-OCT images.

[Artificial intelligence and glaucoma: A literature review].

Journal francais d'ophtalmologie
In recent years, research in artificial intelligence (AI) has experienced an unprecedented surge in the field of ophthalmology, in particular glaucoma. The diagnosis and follow-up of glaucoma is complex and relies on a body of clinical evidence and a...