AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Visual Field Tests

Showing 21 to 30 of 74 articles

Clear Filters

Deep learning: applications in retinal and optic nerve diseases.

Clinical & experimental optometry
Deep learning (DL) represents a paradigm-shifting, burgeoning field of research with emerging clinical applications in optometry. Unlike traditional programming, which relies on human-set specific rules, DL works by exposing the algorithm to a large ...

Automated diagnosing primary open-angle glaucoma from fundus image by simulating human's grading with deep learning.

Scientific reports
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Although deep learning methods have been proposed to diagnose POAG, it remains challenging to develop a robust and explainable algorithm to automatically facil...

Deep learning model to identify homonymous defects on automated perimetry.

The British journal of ophthalmology
BACKGROUND: Homonymous visual field (VF) defects are usually an indicator of serious intracranial pathology but may be subtle and difficult to detect. Artificial intelligence (AI) models could play a key role in simplifying the detection of these def...

Deep Learning Estimation of 10-2 Visual Field Map Based on Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements.

American journal of ophthalmology
PURPOSE: To estimate central 10-degree visual field (VF) map from spectral-domain optical coherence tomography (SD-OCT) retinal nerve fiber layer thickness (RNFL) measurements in glaucoma with artificial intelligence.

Deep learning approaches to predict 10-2 visual field from wide-field swept-source optical coherence tomography en face images in glaucoma.

Scientific reports
Close monitoring of central visual field (VF) defects with 10-2 VF helps prevent blindness in glaucoma. We aimed to develop a deep learning model to predict 10-2 VF from wide-field swept-source optical coherence tomography (SS-OCT) images. Macular ga...

A deep learning model incorporating spatial and temporal information successfully detects visual field worsening using a consensus based approach.

Scientific reports
Glaucoma is a leading cause of irreversible blindness, and its worsening is most often monitored with visual field (VF) testing. Deep learning models (DLM) may help identify VF worsening consistently and reproducibly. In this study, we developed and ...

Deep Learning Estimation of 10-2 Visual Field Map Based on Macular Optical Coherence Tomography Angiography Measurements.

American journal of ophthalmology
PURPOSE: To develop deep learning (DL) models estimating the central visual field (VF) from optical coherence tomography angiography (OCTA) vessel density (VD) measurements.

Improving the Accuracy and Speed of Visual Field Testing in Glaucoma With Structural Information and Deep Learning.

Translational vision science & technology
PURPOSE: To assess the performance of a perimetric strategy using structure-function predictions from a deep learning (DL) model.

Predicting 60-4 visual field tests using 3D facial reconstruction.

The British journal of ophthalmology
BACKGROUND: Despite, the potential clinical utility of 60-4 visual fields, they are not frequently used in clinical practice partly, due to the purported impact of facial contour on field defects. The purpose of this study was to design and test an a...

Prediction of visual field progression with serial optic disc photographs using deep learning.

The British journal of ophthalmology
AIM: We tested the hypothesis that visual field (VF) progression can be predicted with a deep learning model based on longitudinal pairs of optic disc photographs (ODP) acquired at earlier time points during follow-up.