Glaucoma is a leading cause of irreversible blindness, and its worsening is most often monitored with visual field (VF) testing. Deep learning models (DLM) may help identify VF worsening consistently and reproducibly. In this study, we developed and ...
PRCIS: We updated a clinical decision support tool integrating predicted visual field (VF) metrics from an artificial intelligence model and assessed clinician perceptions of the predicted VF metric in this usability study.
Close monitoring of central visual field (VF) defects with 10-2 VF helps prevent blindness in glaucoma. We aimed to develop a deep learning model to predict 10-2 VF from wide-field swept-source optical coherence tomography (SS-OCT) images. Macular ga...
PURPOSE: To develop and validate a deep learning (DL) model for detection of glaucoma progression using spectral-domain (SD)-OCT measurements of retinal nerve fiber layer (RNFL) thickness.
PURPOSE: To estimate central 10-degree visual field (VF) map from spectral-domain optical coherence tomography (SD-OCT) retinal nerve fiber layer thickness (RNFL) measurements in glaucoma with artificial intelligence.
PURPOSE: We applied deep learning-based noise reduction (NR) to optical coherence tomography-angiography (OCTA) images of the radial peripapillary capillaries (RPCs) in eyes with glaucoma and investigated the usefulness of this method as an objective...
PURPOSE: To investigate the efficacy of a deep learning regression method to predict macula ganglion cell-inner plexiform layer (GCIPL) and optic nerve head (ONH) retinal nerve fiber layer (RNFL) thickness for use in glaucoma neuroprotection clinical...
Deep learning (DL) represents a paradigm-shifting, burgeoning field of research with emerging clinical applications in optometry. Unlike traditional programming, which relies on human-set specific rules, DL works by exposing the algorithm to a large ...
PURPOSE: To develop and validate a deep learning (DL) system for predicting each point on visual fields (VFs) from disc and OCT imaging and derive a structure-function mapping.
PURPOSE: To develop and validate a deep learning method of predicting visual function from spectral domain optical coherence tomography (SD-OCT)-derived retinal nerve fiber layer thickness (RNFLT) measurements and corresponding SD-OCT images.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.