AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Water Pollutants, Chemical

Showing 171 to 180 of 352 articles

Clear Filters

Groundwater suitability assessment for irrigation and drinking purposes by integrating spatial analysis, machine learning, water quality index, and health risk model.

Environmental science and pollution research international
An in-depth understanding of nitrate-contaminated surface water and groundwater quality and associated risks is important for groundwater management. Hydrochemical characteristics and driving forces of groundwater quality and non-carcinogenic risks o...

A case study of using artificial neural networks to predict heavy metal pollution in Lake Iznik.

Environmental monitoring and assessment
Artificial neural networks offer a viable route in assessing and understanding the presence and concentration of heavy metals that can cause dangerous complications in the wider context of water quality prediction for the sustainability of the ecosys...

Predicting the Occurrence of Substituted and Unsubstituted, Polycyclic Aromatic Compounds in Coking Wastewater Treatment Plant Effluent using Machine Learning Regression.

Chemosphere
Organic contaminants such as polycyclic aromatic compounds (PACs) occurring in industrial effluents can not only persist in wastewater but transform into more toxic and mobile, substituted heterocyclic products during treatment. Thus, predicting the ...

Incorporation of water quality index models with machine learning-based techniques for real-time assessment of aquatic ecosystems.

Environmental pollution (Barking, Essex : 1987)
Water quality index (WQI) is a well-established tool for assessing the overall quality of fresh inland-waters. However, the effectiveness of real-time assessment of aquatic ecosystems using the WQI is usually impacted by the absence of some water qua...

Differentiating Microplastics from Natural Particles in Aqueous Suspensions Using Flow Cytometry with Machine Learning.

Environmental science & technology
Microplastics (MPs) in natural waters are heterogeneously mixed with other natural particles including algal cells and suspended sediments. An easy-to-use and rapid method for directly measuring and distinguishing MPs from other naturally present col...

Machine learning-enhanced molecular network reveals global exposure to hundreds of unknown PFAS.

Science advances
Unknown forever chemicals like per- and polyfluoroalkyl substances (PFASs) are difficult to identify. Current platforms designed for metabolites and natural products cannot capture the diverse structural characteristics of PFAS. Here, we report an au...

Adsorptive removal of perfluorooctanoic acid from aqueous matrices using peanut husk-derived magnetic biochar: Statistical and artificial intelligence approaches, kinetics, isotherm, and thermodynamics.

Chemosphere
Removal of perfluorooctanoic acid (PFOA) from water matrices is crucial owing to its pervasiveness and adverse ecological and human health effects. This study investigates the adsorptive removal of PFOA using magnetic biochar (MBC) derived from FeCl-...

Machine learning-driven prediction of phosphorus removal performance of metal-modified biochar and optimization of preparation processes considering water quality management objectives.

Bioresource technology
Developing an optimized and targeted design approach for metal-modified biochar based on water quality conditions and management is achievable through machine learning. This study leveraged machine learning to analyze experimental data on phosphate a...

Artificial neural network-based modeling of Malachite green adsorption onto baru fruit endocarp: insights into equilibrium, kinetic, and thermodynamic behavior.

International journal of phytoremediation
In this study, artificial neural network (ANN) tools were employed to forecast the adsorption capacity of Malachite green (MG) by baru fruit endocarp waste (B@FE) under diverse conditions, including pH, adsorbent dosage, initial dye concentration, co...