AIMC Topic: Wings, Animal

Clear Filters Showing 31 to 40 of 72 articles

Flow visualization and force measurement of the clapping effect in bio-inspired flying robots.

Bioinspiration & biomimetics
In this paper, we perform experimental investigations of the aerodynamic characteristics due to wing clapping in bio-inspired flying robots; i.e., micro-air-vehicles (MAVs) that fly by flapping their wings. For this purpose, four flapping MAV models ...

Printed miniature robotic actuators with curvature-induced stiffness control inspired by the insect wing.

Bioinspiration & biomimetics
Stimuli-responsive actuating materials offer a promising way to power insect-scale robots, but a vast majority of these material systems are too soft for load bearing in different applications. While strategies for active stiffness control have been ...

Randomness in appendage coordination facilitates strenuous ground self-righting.

Bioinspiration & biomimetics
Randomness is common in biological and artificial systems, resulting either from stochasticity of the environment or noise in organisms or devices themselves. In locomotor control, randomness is typically considered a nuisance. For example, during dy...

Learning from plant movements triggered by bulliform cells: the biomimetic cellular actuator.

Journal of the Royal Society, Interface
Within the framework of a biomimetic top-down approach, our study started with the technical question of the development of a hinge-free and compliant actuator inspired by plant movements. One meaningful biological concept generator was the opening a...

Longitudinal mode model-based controller design for tailless flapping wing robot with loop shaping compensator.

Bioinspiration & biomimetics
In this study, the stable proportional-derivative (PD) controller gains for pitch control (longitudinal control) are obtained using the linearized and non-coupled longitudinal-mode flight dynamics model of the tailless, hover-capable, flapping wing r...

Dynamic performances of a bird-like flapping wing robot under randomly uncertain disturbances.

PloS one
The nonlinear dynamics of a bird-like flapping wing robot under randomly uncertain disturbances was studied in this study. The bird-like flapping wing robot was first simplified into a two-rod model with a spring connection. Then, the dynamic model o...

Scaling of the performance of insect-inspired passive-pitching flapping wings.

Journal of the Royal Society, Interface
Flapping flight using passive pitch regulation is a commonly used mode of thrust and lift generation in insects and has been widely emulated in flying vehicles because it allows for simple implementation of the complex kinematics associated with flap...

Extremely large sweep amplitude enables high wing loading in giant hovering insects.

Bioinspiration & biomimetics
Beetle Allomyrina dichotoma is one of the largest insects that performs many remarkable modes of locomotion, particularly hovering flight capability. In order to stay airborne, its flexible hindwings are flapped so as to work as a thrust generator. H...

A minimal longitudinal dynamic model of a tailless flapping wing robot for control design.

Bioinspiration & biomimetics
Recently, several insect- and hummingbird-inspired tailless flapping wing robots have been introduced. However, their flight dynamics, which are likely to be similar to that of their biological counterparts, remain yet to be fully understood. We prop...

Design and demonstration of a bio-inspired flapping-wing-assisted jumping robot.

Bioinspiration & biomimetics
Jumping insects such as fleas, froghoppers, grasshoppers, and locusts take off from the ground using a catapult mechanism to push their legs against the surface of the ground while using their pairs of flapping wings to propel them into the air. Such...