AI Medical Compendium

Explore the latest research on artificial intelligence and machine learning in medicine.

Showing 81 to 90 of 1688 articles

Clear Filters

Explainable machine learning to identify risk factors for unplanned hospital readmissions in Nova Scotian hospitals.

Computers in biology and medicine
OBJECTIVE: A report from the Canadian Institute for Health Information found unplanned hospital readmissions (UHR) common, costly, and potentially avoidable, estimating a $1.8 billion cost to the Canadian healthcare system associated with inpatient r...

SGCLMD: Signed graph-based contrastive learning model for predicting somatic mutation-drug association.

Computers in biology and medicine
Somatic mutations could influence critical cellular processes, leading to uncontrolled cell growth and tumor formation. Understanding the intricate interactions between somatic mutations and drugs was crucial for advancing our knowledge of the underl...

Advancements in automated nuclei segmentation for histopathology using you only look once-driven approaches: A systematic review.

Computers in biology and medicine
Histopathology image analysis plays a pivotal role in disease diagnosis and treatment planning, relying heavily on accurate nuclei segmentation for extracting vital cellular information. In recent years, artificial intelligence (AI) and in particular...

Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification on health datasets.

Computers in biology and medicine
Covariance and Hessian matrices have been analyzed separately in the literature for classification problems. However, integrating these matrices has the potential to enhance their combined power in improving classification performance. We present a n...

Development and validation of pan-cancer lesion segmentation AI-model for whole-body 18F-FDG PET/CT in diverse clinical cohorts.

Computers in biology and medicine
BACKGROUND: This study develops a deep learning-based automated lesion segmentation model for whole-body 3DF-fluorodeoxyglucose (FDG)-Position emission tomography (PET) with computed tomography (CT) images agnostic to disease location and site.

A lightweight PCT-Net for segmenting neural fibers in low-quality CCM images.

Computers in biology and medicine
In this paper, we propose a lightweight Position Channel Transformer Network (PCT-Net) for segmenting slender neural fibers in low-quality corneal confocal microscopy images with speckle noise and uneven lighting. Three modules including the channel ...

Which approach better predicts diabetes: Traditional econometric methods or machine learning? Evidence from a cross-sectional study in South Korea.

Computers in biology and medicine
To prevent chronic disease from getting worse, it is important to detect and predict it at an early stage. Therefore, the accuracy of the prediction is particularly important. To investigate the accuracy of different methods, this study compares the ...

Pan-cancer analysis of CDC7 in human tumors: Integrative multi-omics insights and discovery of novel marine-based inhibitors through machine learning and computational approaches.

Computers in biology and medicine
Cancer remains a significant global health challenge, with the Cell Division Cycle 7 (CDC7) protein emerging as a potential therapeutic target due to its critical role in tumor proliferation, survival, and resistance. However, a comprehensive analysi...

HistoMSC: Density and topology analysis for AI-based visual annotation of histopathology whole slide images.

Computers in biology and medicine
We introduce an end-to-end framework for the automated visual annotation of histopathology whole slide images. Our method integrates deep learning models to achieve precise localization and classification of cell nuclei with spatial data aggregation ...

SegElegans: Instance segmentation using dual convolutional recurrent neural network decoder in Caenorhabditis elegans microscopic images.

Computers in biology and medicine
Caenorhabditis elegans is a great model for exploring organismal, cellular, and subcellular biology through optical and fluorescence microscopy, with its research applications steadily expanding. However, manual processing of numerous microscopic ima...