AI Medical Compendium Journal:
BMC pregnancy and childbirth

Showing 11 to 20 of 54 articles

Predicting low birth weight risks in pregnant women in Brazil using machine learning algorithms: data from the Araraquara cohort study.

BMC pregnancy and childbirth
BACKGROUND: Low birth weight (LBW) is a critical factor linked to neonatal morbidity and mortality. Early prediction is essential for timely interventions. This study aimed to develop and evaluate predictive models for LBW using machine learning algo...

Development and validation of a machine learning model for predicting intrapartum fever using pre-labor analgesia clinical indicators: a multicenter retrospective study.

BMC pregnancy and childbirth
BACKGROUND: Labor anesthesia is commonly used for pain relief during labor, but it can increase the risk of intrapartum fever. Currently, there are no reliable tools to predict which parturients might develop fever before labor anesthesia. The predic...

Predicting outcomes of expectant and medical management in early pregnancy miscarriage using machine learning to develop and validate multivariable clinical prediction models.

BMC pregnancy and childbirth
OBJECTIVE: To determine whether readily available patient, ultrasound and treatment outcome data can be used to develop, validate and externally test two machine learning (ML) models for predicting the success of expectant and medical management of m...

Utilization of tree-based machine learning models for predicting low birth weight cases.

BMC pregnancy and childbirth
BACKGROUND: Low birth weight (LBW) is a health condition that affects over 20 million gestational outcomes worldwide. The current literature indicates that machine learning models have the potential to assist healthcare professionals in predicting LB...

Predicting mother and newborn skin-to-skin contact using a machine learning approach.

BMC pregnancy and childbirth
BACKGROUND: Despite the known benefits of skin-to-skin contact (SSC), limited data exists on its implementation, especially its influencing factors. The current study was designed to use machine learning (ML) to identify the predictors of SSC.

Machine learning approaches for predicting fetal macrosomia at different stages of pregnancy: a retrospective study in China.

BMC pregnancy and childbirth
BACKGROUND: Macrosomia presents significant risks to both maternal and neonatal health, however, accurate antenatal prediction remains a major challenge. This study aimed to develop machine learning approaches to enhance the prediction of fetal macro...

Identification of critical biomarkers and immune infiltration in preeclampsia through bioinformatics and machine learning methods.

BMC pregnancy and childbirth
BACKGROUND: Preeclampsia (PE) is a multisystem progressive disease that occurs during pregnancy. Previous studies have shown that the immune system is involved in the placental trophoblast function and the pathological process of uterine vascular rem...

Ensemble learning to predict short birth interval among reproductive-age women in Ethiopia: evidence from EDHS 2016-2019.

BMC pregnancy and childbirth
BACKGROUND: A birth interval of less than 33 months was considered short, and in low- income countries like Ethiopia, a short birth interval is the primary cause of approximately 822 maternal deaths every day. Due to that this study aimed to predict ...

Risk factors and machine learning prediction models for intrahepatic cholestasis of pregnancy.

BMC pregnancy and childbirth
BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder that occurs in the second and third trimesters of pregnancy and is associated with a significant risk of fetal complications, including premature birth and fetal death. In cl...

AI-based analysis of fetal growth restriction in a prospective obstetric cohort quantifies compound risks for perinatal morbidity and mortality and identifies previously unrecognized high risk clinical scenarios.

BMC pregnancy and childbirth
BACKGROUND: Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to use data from a l...