AI Medical Compendium Journal:
Neuro-oncology

Showing 21 to 28 of 28 articles

Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers.

Neuro-oncology
BACKGROUND: Pathological diagnosis of glioma subtypes is essential for treatment planning and prognosis. Standard histological diagnosis of glioma is based on postoperative hematoxylin and eosin stained slides by neuropathologists. With advancing art...

Deep learning-based detection and segmentation-assisted management of brain metastases.

Neuro-oncology
BACKGROUND: Three-dimensional T1 magnetization prepared rapid acquisition gradient echo (3D-T1-MPRAGE) is preferred in detecting brain metastases (BM) among MRI. We developed an automatic deep learning-based detection and segmentation method for BM (...

A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas.

Neuro-oncology
BACKGROUND: Isocitrate dehydrogenase (IDH) mutation status has emerged as an important prognostic marker in gliomas. Currently, reliable IDH mutation determination requires invasive surgical procedures. The purpose of this study was to develop a high...

Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain.

Neuro-oncology
BACKGROUND: Conventional MRI cannot be used to identify H3 K27M mutation status. This study aimed to investigate the feasibility of predicting H3 K27M mutation status by applying an automated machine learning (autoML) approach to the MR radiomics fea...

Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement.

Neuro-oncology
BACKGROUND: Longitudinal measurement of glioma burden with MRI is the basis for treatment response assessment. In this study, we developed a deep learning algorithm that automatically segments abnormal fluid attenuated inversion recovery (FLAIR) hype...