AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Isocitrate Dehydrogenase

Showing 1 to 10 of 60 articles

Clear Filters

Postoperative Karnofsky performance status prediction in patients with IDH wild-type glioblastoma: A multimodal approach integrating clinical and deep imaging features.

PloS one
BACKGROUND AND PURPOSE: Glioblastoma is a highly aggressive brain tumor with limited survival that poses challenges in predicting patient outcomes. The Karnofsky Performance Status (KPS) score is a valuable tool for assessing patient functionality an...

Deep Learning and Habitat Radiomics for the Prediction of Glioma Pathology Using Multiparametric MRI: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: Recent radiomics studies on predicting pathological outcomes of glioma have shown immense potential. However, the predictive ability remains suboptimal due to the tumor intrinsic heterogeneity. We aimed to achieve better pat...

The application value of support vector machine model based on multimodal MRI in predicting IDH-1mutation and Ki-67 expression in glioma.

BMC medical imaging
PURPOSE: To investigate the application value of support vector machine (SVM) model based on diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) and amide proton transfer- weighted (APTW) imaging in predicting isocitrate dehydrogenase 1...

Intraoperative label-free tissue diagnostics using a stimulated Raman histology imaging system with artificial intelligence: An initial experience.

Clinical neurology and neurosurgery
BACKGROUND: Accurate intraoperative tissue diagnostics could impact on decision making regarding the extent of resection (EOR) during brain tumor surgery. Stimulated Raman histology (SRH) is a label-free optical imaging method that uses different bio...

Semisupervised adaptive learning models for IDH1 mutation status prediction.

PloS one
The mutation status of isocitrate dehydrogenase1 (IDH1) in glioma is critical information for the diagnosis, treatment, and prognosis. Accurately determining such information from MRI data has emerged as a significant research challenge in recent yea...

Brain tumor intelligent diagnosis based on Auto-Encoder and U-Net feature extraction.

PloS one
Preoperative classification of brain tumors is critical to developing personalized treatment plans, however existing classification methods rely on manual intervention and often have problems with efficiency and accuracy, which may lead to misdiagnos...

Detecting IDH and TERTp mutations in diffuse gliomas using H-MRS with attention deep-shallow networks.

Computers in biology and medicine
BACKGROUND: Preoperative and noninvasive detection of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations in glioma is critical for prognosis and treatment planning. This study aims to develop deep lear...

From pixels to prognosis: leveraging radiomics and machine learning to predict IDH1 genotype in gliomas.

Neurosurgical review
Gliomas are the most common primary tumors of the central nervous system, and advances in genetics and molecular medicine have significantly transformed their classification and treatment. This study aims to predict the IDH1 genotype in gliomas using...

Identification of Recurrence-associated Gene Signatures and Machine Learning-based Prediction in IDH-Wildtype Histological Glioblastoma.

Journal of molecular neuroscience : MN
Glioblastoma (GBM) is a highly aggressive brain tumor with frequent recurrence, yet the molecular mechanisms driving recurrence remain poorly understood. Identifying recurrence-associated genes may improve prognosis and treatment strategies. We appli...