PURPOSE: Advancements in Machine Learning (ML) techniques have revolutionized diagnosing and monitoring epileptic seizures using Electroencephalogram (EEG) signals. This analysis aims to determine the effectiveness of ML techniques in recognizing pat...
PURPOSE: Compare the identification of patients with established status epilepticus (ESE) and refractory status epilepticus (RSE) in electronic health records (EHR) using human review versus natural language processing (NLP) assisted review.
The emergence of telemedicine and artificial intelligence (AI) has set the stage for a possible revolution in the future of medicine and neurology including the diagnosis and management of epilepsy. Telemedicine, with its proven efficacy during the C...
BACKGROUND: Epilepsy is a neurological condition marked by frequent seizures and various cognitive and psychological effects. Reliable information is essential for effective treatment. Natural language processing models like ChatGPT are increasingly ...
PURPOSE: Recently a realistic simulator of patient seizure diaries was developed that can reproduce effects seen in randomized clinical trials (RCTs). RCTs suffer from high costs and statistical inefficiencies. Using realistic simulation and machine ...
OBJECTIVE: One barrier hindering high frequency brain signals (HFBS, >80 Hz) from wide clinical applications is that the brain generates both pathological and physiological HFBS. This study was to find specific biomarkers for localizing epileptogenic...
Patients suffering from epileptic seizures are usually treated with medication and/or surgical procedures. However, in more than 30% of cases, medication or surgery does not effectively control seizure activity. A method that predicts the onset of a ...