AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Drug Resistant Epilepsy

Showing 1 to 10 of 62 articles

Clear Filters

Clinical Value of ChatGPT for Epilepsy Presurgical Decision-Making: Systematic Evaluation of Seizure Semiology Interpretation.

Journal of medical Internet research
BACKGROUND: For patients with drug-resistant focal epilepsy, surgical resection of the epileptogenic zone (EZ) is an effective treatment to control seizures. Accurate localization of the EZ is crucial and is typically achieved through comprehensive p...

Machine learning algorithm for predicting seizure control after temporal lobe resection using peri-ictal electroencephalography.

Scientific reports
Brain resection is curative for a subset of patients with drug resistant epilepsy but up to half will fail to achieve sustained seizure freedom in the long term. There is a critical need for accurate prediction tools to identify patients likely to ha...

Metrics for evaluation of automatic epileptogenic zone localization in intracranial electrophysiology.

Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
INTRODUCTION: Precise localization of the epileptogenic zone is critical for successful epilepsy surgery. However, imbalanced datasets in terms of epileptic vs. normal electrode contacts and a lack of standardized evaluation guidelines hinder the con...

Machine learning models for predicting treatment response in infantile epilepsies.

Epilepsy & behavior : E&B
UNLABELLED: Epilepsy stands as one of the prevalent and significant neurological disorders, representing a critical healthcare challenge. Recently, machine learning techniques have emerged as versatile tools across various healthcare domains, encompa...

Seizure Sources Can Be Imaged from Scalp EEG by Means of Biophysically Constrained Deep Neural Networks.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Seizure localization is important for managing drug-resistant focal epilepsy. Here, the capability of a novel deep learning-based source imaging framework (DeepSIF) for imaging seizure activities from electroencephalogram (EEG) recordings in drug-res...

Machine learning-based algorithm of drug-resistant prediction in newly diagnosed patients with temporal lobe epilepsy.

Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
OBJECTIVES: To develop a predicted algorithm for drug-resistant epilepsy (DRE) in newly diagnosed temporal lobe epilepsy (TLE) patients.

Prediction of Pharmacoresistance in Drug-Naïve Temporal Lobe Epilepsy Using Ictal EEGs Based on Convolutional Neural Network.

Neuroscience bulletin
Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications (ASMs), a condition known as pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy remains an intractable issue in the clinic. Its ...

Automated Whole-Brain Focal Cortical Dysplasia Detection Using MR Fingerprinting With Deep Learning.

Neurology
BACKGROUND AND OBJECTIVES: Focal cortical dysplasia (FCD) is a common pathology for pharmacoresistant focal epilepsy, yet detection of FCD on clinical MRI is challenging. Magnetic resonance fingerprinting (MRF) is a novel quantitative imaging techniq...