BACKGROUND: Adenine base editors (ABEs) enable the conversion of A•T to G•C base pairs. Since the sequence of the target locus influences base editing efficiency, efforts have been made to develop computational models that can predict base editing ou...
Interdisciplinary sciences, computational life sciences
33834381
DNA N6-methyladenine (6 mA), as an essential component of epigenetic modification, cannot be neglected in genetic regulation mechanism. The efficient and accurate prediction of 6 mA sites is beneficial to the development of biological genetics. Bioch...
DNA N6-methylation (6mA) in Adenine nucleotide is a post replication modification responsible for many biological functions. Automated and accurate computational methods can help to identify 6mA sites in long genomes saving significant time and money...
This study used k-mer embeddings as effective feature to identify DNA N6-Methyladenine sites in plant genomes and obtained improved performance without substantial effort in feature extraction, combination and selection. Identification of DNA N6-meth...
MOTIVATION: DNA N6-methyladenine (6mA) is a pivotal DNA modification for various biological processes. More accurate prediction of 6mA methylation sites plays an irreplaceable part in grasping the internal rationale of related biological activities. ...
DNA N6-methyladenine (6mA) is one of the most common and abundant modifications, which plays essential roles in various biological processes and cellular functions. Therefore, the accurate identification of DNA 6mA sites is of great importance for a ...
Due to the tolerance of mismatches between gRNA and targeting sequence, base editors frequently induce unwanted Cas9-dependent off-target mutations. Here, to develop models to predict such off-targets, we design gRNA-off- target pairs for adenine bas...
IEEE/ACM transactions on computational biology and bioinformatics
38949938
DNA N-methyladenine (6mA) is an important epigenetic modification that plays a vital role in various cellular processes. Accurate identification of the 6mA sites is fundamental to elucidate the biological functions and mechanisms of modification. How...
N6-methyladenine (6 mA) is a pivotal DNA modification that plays a crucial role in epigenetic regulation, gene expression, and various biological processes. With advancements in sequencing technologies and computational biology, there is an increasin...
We had previously reported a convolutional neural network (CNN) based approach, called the holistic kinetic model (HK model 1), for detecting 5-methylcytosine (5mC) by single molecule real-time sequencing (Pacific Biosciences). In this study, we cons...