AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Adenine

Showing 1 to 10 of 18 articles

Clear Filters

Predicting adenine base editing efficiencies in different cellular contexts by deep learning.

Genome biology
BACKGROUND: Adenine base editors (ABEs) enable the conversion of A•T to G•C base pairs. Since the sequence of the target locus influences base editing efficiency, efforts have been made to develop computational models that can predict base editing ou...

i6mA-VC: A Multi-Classifier Voting Method for the Computational Identification of DNA N6-methyladenine Sites.

Interdisciplinary sciences, computational life sciences
DNA N6-methyladenine (6 mA), as an essential component of epigenetic modification, cannot be neglected in genetic regulation mechanism. The efficient and accurate prediction of 6 mA sites is beneficial to the development of biological genetics. Bioch...

A convolution based computational approach towards DNA N6-methyladenine site identification and motif extraction in rice genome.

Scientific reports
DNA N6-methylation (6mA) in Adenine nucleotide is a post replication modification responsible for many biological functions. Automated and accurate computational methods can help to identify 6mA sites in long genomes saving significant time and money...

Using k-mer embeddings learned from a Skip-gram based neural network for building a cross-species DNA N6-methyladenine site prediction model.

Plant molecular biology
This study used k-mer embeddings as effective feature to identify DNA N6-Methyladenine sites in plant genomes and obtained improved performance without substantial effort in feature extraction, combination and selection. Identification of DNA N6-meth...

GC6mA-Pred: A deep learning approach to identify DNA N6-methyladenine sites in the rice genome.

Methods (San Diego, Calif.)
MOTIVATION: DNA N6-methyladenine (6mA) is a pivotal DNA modification for various biological processes. More accurate prediction of 6mA methylation sites plays an irreplaceable part in grasping the internal rationale of related biological activities. ...

SNN6mA: Improved DNA N6-methyladenine site prediction using Siamese network-based feature embedding.

Computers in biology and medicine
DNA N6-methyladenine (6mA) is one of the most common and abundant modifications, which plays essential roles in various biological processes and cellular functions. Therefore, the accurate identification of DNA 6mA sites is of great importance for a ...

Prediction of base editor off-targets by deep learning.

Nature communications
Due to the tolerance of mismatches between gRNA and targeting sequence, base editors frequently induce unwanted Cas9-dependent off-target mutations. Here, to develop models to predict such off-targets, we design gRNA-off- target pairs for adenine bas...

Ense-i6mA: Identification of DNA N-Methyladenine Sites Using XGB-RFE Feature Selection and Ensemble Machine Learning.

IEEE/ACM transactions on computational biology and bioinformatics
DNA N-methyladenine (6mA) is an important epigenetic modification that plays a vital role in various cellular processes. Accurate identification of the 6mA sites is fundamental to elucidate the biological functions and mechanisms of modification. How...

N6-methyladenine identification using deep learning and discriminative feature integration.

BMC medical genomics
N6-methyladenine (6 mA) is a pivotal DNA modification that plays a crucial role in epigenetic regulation, gene expression, and various biological processes. With advancements in sequencing technologies and computational biology, there is an increasin...

Transformer-based deep learning for accurate detection of multiple base modifications using single molecule real-time sequencing.

Communications biology
We had previously reported a convolutional neural network (CNN) based approach, called the holistic kinetic model (HK model 1), for detecting 5-methylcytosine (5mC) by single molecule real-time sequencing (Pacific Biosciences). In this study, we cons...