This paper proposes a noninvasive dual optical photoplethysmography (PPG) sensor to classify the degree of arteriovenous fistula (AVF) stenosis in hemodialysis (HD) patients. Dual PPG measurement node (DPMN) becomes the primary tool in this work for ...
The classifier of support vector machine (SVM) learning for assessing the quality of arteriovenous fistulae (AVFs) in hemodialysis (HD) patients using a new photoplethysmography (PPG) sensor device is presented in this work. In clinical practice, the...
Physical findings of auscultation cannot be quantified at the arteriovenous fistula examination site during daily dialysis treatment. Consequently, minute changes over time cannot be recorded based only on subjective observations. In this study, we s...
OBJECTIVE: To investigate the feasibility of using a deep learning-based analysis of auscultation data to predict significant stenosis of arteriovenous fistulas (AVF) in patients undergoing hemodialysis requiring percutaneous transluminal angioplasty...
BACKGROUND: Arteriovenous fistula stenosis is a common complication in hemodialysis patients, yet effective predictive tools are lacking. This study aims to develop an interpretable machine learning model for stenosis risk prediction.