AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Arteriovenous Fistula

Showing 1 to 5 of 5 articles

Clear Filters

Levenberg-Marquardt Neural Network Algorithm for Degree of Arteriovenous Fistula Stenosis Classification Using a Dual Optical Photoplethysmography Sensor.

Sensors (Basel, Switzerland)
This paper proposes a noninvasive dual optical photoplethysmography (PPG) sensor to classify the degree of arteriovenous fistula (AVF) stenosis in hemodialysis (HD) patients. Dual PPG measurement node (DPMN) becomes the primary tool in this work for ...

Machine Learning Classification for Assessing the Degree of Stenosis and Blood Flow Volume at Arteriovenous Fistulas of Hemodialysis Patients Using a New Photoplethysmography Sensor Device.

Sensors (Basel, Switzerland)
The classifier of support vector machine (SVM) learning for assessing the quality of arteriovenous fistulae (AVFs) in hemodialysis (HD) patients using a new photoplethysmography (PPG) sensor device is presented in this work. In clinical practice, the...

Evaluation of Hemodialysis Arteriovenous Bruit by Deep Learning.

Sensors (Basel, Switzerland)
Physical findings of auscultation cannot be quantified at the arteriovenous fistula examination site during daily dialysis treatment. Consequently, minute changes over time cannot be recorded based only on subjective observations. In this study, we s...

Feasibility of Deep Learning-Based Analysis of Auscultation for Screening Significant Stenosis of Native Arteriovenous Fistula for Hemodialysis Requiring Angioplasty.

Korean journal of radiology
OBJECTIVE: To investigate the feasibility of using a deep learning-based analysis of auscultation data to predict significant stenosis of arteriovenous fistulas (AVF) in patients undergoing hemodialysis requiring percutaneous transluminal angioplasty...

Machine learning-based risk prediction model for arteriovenous fistula stenosis.

European journal of medical research
BACKGROUND: Arteriovenous fistula stenosis is a common complication in hemodialysis patients, yet effective predictive tools are lacking. This study aims to develop an interpretable machine learning model for stenosis risk prediction.