AIMC Topic: Auscultation

Clear Filters Showing 1 to 10 of 43 articles

Artificial Intelligence Models for Pediatric Lung Sound Analysis: Systematic Review and Meta-Analysis.

Journal of medical Internet research
BACKGROUND: Pediatric respiratory diseases, including asthma and pneumonia, are major causes of morbidity and mortality in children. Auscultation of lung sounds is a key diagnostic tool but is prone to subjective variability. The integration of artif...

A MEMS seismometer respiratory monitor for work of breathing assessment and adventitious lung sounds detection via deep learning.

Scientific reports
Physicians evaluate a patient's respiratory health during a physical examination by visual assessment of the work of breathing (WoB) to determine respiratory stability, and by detecting abnormal lung sounds via lung auscultation using a stethoscope t...

[Artificial intelligence and machine learning in auscultation: prospects of the project DigitaLung].

Pneumologie (Stuttgart, Germany)
Auscultation is one of the key medical skills in physical examination. The main problem with auscultation is the lack of objectivity of the findings and great dependence on the experience of the examiner. Auscultation using machine learning and neura...

An explainable and accurate transformer-based deep learning model for wheeze classification utilizing real-world pediatric data.

Scientific reports
Auscultation is a method that involves listening to sounds from the patient's body, mainly using a stethoscope, to diagnose diseases. The stethoscope allows for non-invasive, real-time diagnosis, and it is ideal for diagnosing respiratory diseases an...

Enhancing bowel sound recognition with self-attention and self-supervised pre-training.

PloS one
Bowel sounds, a reflection of the gastrointestinal tract's peristalsis, are essential for diagnosing and monitoring gastrointestinal conditions. However, the absence of an effective, non-invasive method for assessing digestion through auscultation ha...

Elevating Patient Care With Deep Learning: High-Resolution Cervical Auscultation Signals for Swallowing Kinematic Analysis in Nasogastric Tube Patients.

IEEE journal of translational engineering in health and medicine
Patients with nasogastric (NG) tubes require careful monitoring due to the potential impact of the tube on their ability to swallow safely. This study aimed to investigate the utility of high-resolution cervical auscultation (HRCA) signals in assessi...

Automated Interpretation of Lung Sounds by Deep Learning in Children With Asthma: Scoping Review and Strengths, Weaknesses, Opportunities, and Threats Analysis.

Journal of medical Internet research
BACKGROUND: The interpretation of lung sounds plays a crucial role in the appropriate diagnosis and management of pediatric asthma. Applying artificial intelligence (AI) to this task has the potential to better standardize assessment and may even imp...

Development and internal validation of an artificial intelligence-assisted bowel sounds auscultation system to predict early enteral nutrition-associated diarrhoea in acute pancreatitis: a prospective observational study.

British journal of hospital medicine (London, England : 2005)
An artificial intelligence-assisted prediction model for enteral nutrition-associated diarrhoea (ENAD) in acute pancreatitis (AP) was developed utilising data obtained from bowel sounds auscultation. This model underwent validation through a single-...

Identification of Congenital Valvular Murmurs in Young Patients Using Deep Learning-Based Attention Transformers and Phonocardiograms.

IEEE journal of biomedical and health informatics
One in every four newborns suffers from congenital heart disease (CHD) that causes defects in the heart structure. The current gold-standard assessment technique, echocardiography, causes delays in the diagnosis owing to the need for experts who vary...

Improving Valvular Pathologies and Ventricular Dysfunction Diagnostic Efficiency Using Combined Auscultation and Electrocardiography Data: A Multimodal AI Approach.

Sensors (Basel, Switzerland)
Simple sensor-based procedures, including auscultation and electrocardiography (ECG), can facilitate early diagnosis of valvular diseases, resulting in timely treatment. This study assessed the impact of combining these sensor-based procedures with m...