AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Renal Dialysis

Showing 1 to 10 of 106 articles

Clear Filters

Hope for the best prepare for the worst: acute kidney disease and catastrophic comorbidities (a case report).

The Pan African medical journal
It is evident that Acute Kidney Injury (AKI) is an independent risk factor for both the survival of patients and their kidneys. Here, we present a case of oliguric AKI secondary to blunt trauma-induced crush syndrome complicated with severe sepsis in...

Prognostic Features for Overall Survival in Male Diabetic Patients Undergoing Hemodialysis Using Elastic Net Penalized Cox Regression; A Machine Learning Approach.

Archives of Iranian medicine
BACKGROUND: Diabetics constitute a significant percentage of hemodialysis (HD) patients with higher mortality, especially among male patients. A machine learning algorithm was used to optimize the prediction of time to death in male diabetic hemodial...

Machine learning models for predicting interaction affinity energy between human serum proteins and hemodialysis membrane materials.

Scientific reports
Membrane incompatibility poses significant health risks, including severe complications and potential fatality. Surface modification of membranes has emerged as a pivotal technology in the membrane industry, aiming to improve the hemocompatibility an...

A noninvasive hyperkalemia monitoring system for dialysis patients based on a 1D-CNN model and single-lead ECG from wearable devices.

Scientific reports
This study aimed to develop a real-time, noninvasive hyperkalemia monitoring system for dialysis patients with chronic kidney disease. Hyperkalemia, common in dialysis patients, can lead to life-threatening arrhythmias or sudden death if untreated. T...

Machine learning validation of the AVAS classification compared to ultrasound mapping in a multicentre study.

Scientific reports
The Arteriovenous Access Stage (AVAS) classification simplifies information about suitability of vessels for vascular access (VA). It's been previously validated in a clinical study. Here, AVAS performance was tested against multiple ultrasound mappi...

A machine learning-based model for predicting the risk of cognitive frailty in elderly patients on maintenance hemodialysis.

Scientific reports
Elderly patients undergoing maintenance hemodialysis (MHD) face a heightened risk of cognitive frailty (CF), which significantly compromises quality of life. Early identification of at-risk individuals and timely intervention are essential. Neverthel...

Research on the development of an intelligent prediction model for blood pressure variability during hemodialysis.

BMC nephrology
OBJECTIVE: Blood pressure fluctuations during dialysis, including intradialytic hypotension (IDH) and intradialytic hypertension (IDHTN), are common complications among patients undergoing maintenance hemodialysis. Early prediction of IDH and IDHTN c...

Machine learning-based risk prediction model for arteriovenous fistula stenosis.

European journal of medical research
BACKGROUND: Arteriovenous fistula stenosis is a common complication in hemodialysis patients, yet effective predictive tools are lacking. This study aims to develop an interpretable machine learning model for stenosis risk prediction.

Intermittent hypoxemia during hemodialysis: AI-based identification of arterial oxygen saturation saw-tooth pattern.

BMC nephrology
BACKGROUND: Maintenance hemodialysis patients experience high morbidity and mortality, primarily from cardiovascular and infectious diseases. It was discovered recently that low arterial oxygen saturation (SaO) is associated with a pro-inflammatory p...

Development and external validation of a machine learning model for cardiac valve calcification early screening in dialysis patients: a multicenter study.

Renal failure
BACKGROUND: Cardiac valve calcification (CVC) is common in dialysis patients and associated with increased cardiovascular risk. However, early screening has been limited by cost concerns. This study aimed to develop and validate a machine learning mo...