BACKGROUND AND PURPOSE: Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage negatively impacts long-term recovery but is often detected too late to prevent damage. We aim to develop hourly risk scores using routinely collected cl...
BACKGROUND: Predictive maps of the final infarct may help therapeutic decisions in acute ischemic stroke patients. Our objectives were to assess whether integrating the reperfusion status into deep learning models would improve their performance, and...
Intracranial aneurysm is a common life-threatening disease. Computed tomography angiography is recommended as the standard diagnosis tool; yet, interpretation can be time-consuming and challenging. We present a specific deep-learning-based model trai...
OBJECTIVE: To determine whether machine learning (ML) algorithms can improve the prediction of delayed cerebral ischemia (DCI) and functional outcomes after subarachnoid hemorrhage (SAH).
Background Large vessel occlusion (LVO) stroke is one of the most time-sensitive diagnoses in medicine and requires emergent endovascular therapy to reduce morbidity and mortality. Leveraging recent advances in deep learning may facilitate rapid dete...
Annals of clinical and translational neurology
Sep 29, 2020
OBJECTIVE: Subarachnoid hemorrhage (SAH) is often devastating with increased early mortality, particularly in those with presumed delayed cerebral ischemia (DCI). The ability to accurately predict survival for SAH patients during the hospital course ...
As is known, cerebral stroke has become one of the main diseases endangering people's health; ischaemic strokes accounts for approximately 85% of cerebral strokes. According to research, early prediction and prevention can effectively reduce the inci...
BACKGROUND AND PURPOSE: Reliable recognition of large vessel occlusion (LVO) on noncontrast computed tomography (NCCT) may accelerate identification of endovascular treatment candidates. We aim to validate a machine learning algorithm (MethinksLVO) t...
Computer methods and programs in biomedicine
Aug 15, 2020
BACKGROUND AND OBJECTIVE: Currently, it is challenging to detect acute ischemic stroke (AIS)-related changes on computed tomography (CT) images. Therefore, we aimed to develop and evaluate an automatic AIS detection system involving a two-stage deep ...
Accurate, automated extraction of clinical stroke information from unstructured text has several important applications. ICD-9/10 codes can misclassify ischemic stroke events and do not distinguish acuity or location. Expeditious, accurate data extra...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.