AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Breast Neoplasms

Showing 151 to 160 of 2031 articles

Clear Filters

Integrating mitochondrial and lysosomal gene analysis for breast cancer prognosis using machine learning.

Scientific reports
The impact of mitochondrial and lysosomal co-dysfunction on breast cancer patient outcomes is unclear. The objective of this study is to develop a predictive machine learning (ML) model utilizing mitochondrial and lysosomal co-regulators in order to ...

A quantum-optimized approach for breast cancer detection using SqueezeNet-SVM.

Scientific reports
Breast cancer is one of the most aggressive types of cancer, and its early diagnosis is crucial for reducing mortality rates and ensuring timely treatment. Computer-aided diagnosis systems provide automated mammography image processing, interpretatio...

Breast radiation therapy fluence painting with multi-agent deep reinforcement learning.

Medical physics
BACKGROUND: The electronic compensation (ECOMP) technique for breast radiation therapy provides excellent dose conformity and homogeneity. However, the manual fluence painting process presents a challenge for efficient clinical operation.

A deep learning approach for early prediction of breast cancer neoadjuvant chemotherapy response on multistage bimodal ultrasound images.

BMC medical imaging
Neoadjuvant chemotherapy (NAC) is a systemic and systematic chemotherapy regimen for breast cancer patients before surgery. However, NAC is not effective for everyone, and the process is excruciating. Therefore, accurate early prediction of the effic...

Photoacoustic Imaging with Attention-Guided Deep Learning for Predicting Axillary Lymph Node Status in Breast Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: Preoperative assessment of axillary lymph node (ALN) status is essential for breast cancer management. This study explores the use of photoacoustic (PA) imaging combined with attention-guided deep learning (DL) for precise p...

Classifying the molecular subtype of breast cancer using vision transformer and convolutional neural network features.

Breast cancer research and treatment
PURPOSE: Identification of the molecular subtypes in breast cancer allows to optimize treatment strategies, but usually requires invasive needle biopsy. Recently, non-invasive imaging has emerged as promising means to classify them. Magnetic resonanc...

Multimodal integration using a machine learning approach facilitates risk stratification in HR+/HER2- breast cancer.

Cell reports. Medicine
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most common type of breast cancer, with continuous recurrence remaining an important clinical issue. Current relapse predictive models in H...

Development of a machine learning tool to predict deep inspiration breath hold requirement for locoregional right-sided breast radiation therapy patients.

Biomedical physics & engineering express
. This study presents machine learning (ML) models that predict if deep inspiration breath hold (DIBH) is needed based on lung dose in right-sided breast cancer patients during the initial computed tomography (CT) appointment.. Anatomic distances wer...

A graph neural network approach for hierarchical mapping of breast cancer protein communities.

BMC bioinformatics
BACKGROUND: Comprehensively mapping the hierarchical structure of breast cancer protein communities and identifying potential biomarkers from them is a promising way for breast cancer research. Existing approaches are subjective and fail to take info...