AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Child, Preschool

Showing 251 to 260 of 1151 articles

Clear Filters

Predictive modeling and socioeconomic determinants of diarrhea in children under five in the Amhara Region, Ethiopia.

Frontiers in public health
BACKGROUND: Diarrheal disease, characterized by high morbidity and mortality rates, continues to be a serious public health concern, especially in developing nations such as Ethiopia. The significant burden it imposes on these countries underscores t...

Using Advanced Convolutional Neural Network Approaches to Reveal Patient Age, Gender, and Weight Based on Tongue Images.

BioMed research international
The human tongue has been long believed to be a window to provide important insights into a patient's health in medicine. The present study introduced a novel approach to predict patient age, gender, and weight inferences based on tongue images using...

Automated detection of tonic seizures using wearable movement sensor and artificial neural network.

Epilepsia
Although several validated wearable devices are available for detection of generalized tonic-clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neu...

Exploring Machine Learning Algorithms to Predict Diarrhea Disease and Identify its Determinants among Under-Five Years Children in East Africa.

Journal of epidemiology and global health
BACKGROUND: The second most common cause of death for children under five is diarrhea. Early Predicting diarrhea disease and identify its determinants (factors) using an advanced machine learning model is the most effective way to save the lives of c...

Communicating exploratory unsupervised machine learning analysis in age clustering for paediatric disease.

BMJ health & care informatics
BACKGROUND: Despite the increasing availability of electronic healthcare record (EHR) data and wide availability of plug-and-play machine learning (ML) Application Programming Interfaces, the adoption of data-driven decision-making within routine hos...

An artificial intelligence platform for the screening and managing of strabismus.

Eye (London, England)
OBJECTIVES: Considering the escalating incidence of strabismus and its consequential jeopardy to binocular vision, there is an imperative demand for expeditious and precise screening methods. This study was to develop an artificial intelligence (AI) ...

Predicting hospital admissions for upper respiratory tract complaints: An artificial neural network approach integrating air pollution and meteorological factors.

Environmental monitoring and assessment
This study uses artificial neural networks (ANNs) to examine the intricate relationship between air pollutants, meteorological factors, and respiratory disorders. The study investigates the correlation between hospital admissions for respiratory dise...

Development of machine learning models predicting mortality using routinely collected observational health data from 0-59 months old children admitted to an intensive care unit in Bangladesh: critical role of biochemistry and haematology data.

BMJ paediatrics open
INTRODUCTION: Treatment in the intensive care unit (ICU) generates complex data where machine learning (ML) modelling could be beneficial. Using routine hospital data, we evaluated the ability of multiple ML models to predict inpatient mortality in a...