AIMC Topic: Coronary Stenosis

Clear Filters Showing 11 to 20 of 119 articles

End-to-end deep-learning model for the detection of coronary artery stenosis on coronary CT images.

Open heart
PURPOSE: We examined whether end-to-end deep-learning models could detect moderate (≥50%) or severe (≥70%) stenosis in the left anterior descending artery (LAD), right coronary artery (RCA) or left circumflex artery (LCX) in iodine contrast-enhanced ...

Automated classification of coronary LEsions fRom coronary computed Tomography angiography scans with an updated deep learning model: ALERT study.

European radiology
OBJECTIVES: The use of deep learning models for quantitative measurements on coronary computed tomography angiography (CCTA) may reduce inter-reader variability and increase efficiency in clinical reporting. This study aimed to investigate the diagno...

Automated stenosis estimation of coronary angiographies using end-to-end learning.

The international journal of cardiovascular imaging
The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consumin...

Computerized classification method for significant coronary artery stenosis on whole-heart coronary MRA using 3D convolutional neural networks with attention mechanisms.

Radiological physics and technology
This study aims to develop a computerized classification method for significant coronary artery stenosis on whole-heart coronary magnetic resonance angiography (WHCMRA) images using a 3D convolutional neural network (3D-CNN) with attention mechanisms...

Noninvasive machine-learning models for the detection of lesion-specific ischemia in patients with stable angina with intermediate stenosis severity on coronary CT angiography.

Physical and engineering sciences in medicine
This study proposed noninvasive machine-learning models for the detection of lesion-specific ischemia (LSI) in patients with stable angina with intermediate stenosis severity based on coronary computed tomography (CT) angiography. This single-center ...

Artificial Intelligence-Driven Assessment of Coronary Computed Tomography Angiography for Intermediate Stenosis: Comparison With Quantitative Coronary Angiography and Fractional Flow Reserve.

The American journal of cardiology
We aimed to compare artificial intelligence (AI)-based coronary stenosis evaluation of coronary computed tomography angiography (CCTA) with its quantitative counterpart of invasive coronary angiography (ICA) and invasive fractional flow reserve (FFR)...

Screening for severe coronary stenosis in patients with apparently normal electrocardiograms based on deep learning.

BMC medical informatics and decision making
BACKGROUND: Patients with severe coronary arterystenosis may present with apparently normal electrocardiograms (ECGs), making it difficult to detect adverse health conditions during routine screenings or physical examinations. Consequently, these pat...

Accuracy of deep learning in the differential diagnosis of coronary artery stenosis: a systematic review and meta-analysis.

BMC medical imaging
BACKGROUND: In recent years, as deep learning has received widespread attention in the field of heart disease, some studies have explored the potential of deep learning based on coronary angiography (CAG) or coronary CT angiography (CCTA) images in d...