AIMC Topic: CRISPR-Cas Systems

Clear Filters Showing 51 to 60 of 94 articles

Evaluation of off-targets predicted by sgRNA design tools.

Genomics
The ease of programming CRISPR/Cas9 system for targeting a specific location within the genome has paved way for many clinical and industrial applications. However, its widespread use is still limited owing to its off-target effects. Though this off-...

Deep learning improves the ability of sgRNA off-target propensity prediction.

BMC bioinformatics
BACKGROUND: CRISPR/Cas9 system, as the third-generation genome editing technology, has been widely applied in target gene repair and gene expression regulation. Selection of appropriate sgRNA can improve the on-target knockout efficacy of CRISPR/Cas9...

SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance.

Science advances
We evaluated SpCas9 activities at 12,832 target sequences using a high-throughput approach based on a human cell library containing single-guide RNA-encoding and target sequence pairs. Deep learning-based training on this large dataset of SpCas9-indu...

Prediction of sgRNA on-target activity in bacteria by deep learning.

BMC bioinformatics
BACKGROUND: One of the main challenges for the CRISPR-Cas9 system is selecting optimal single-guide RNAs (sgRNAs). Recently, deep learning has enhanced sgRNA prediction in eukaryotes. However, the prokaryotic chromatin structure is different from euk...

An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools.

RNA biology
The CRISPR-Cas9 system has become the most promising and versatile tool for genetic manipulation applications. Albeit the technology has been broadly adopted by both academic and pharmaceutic societies, the activity (on-target) and specificity (off-t...

Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning.

Nature communications
Highly specific Cas9 nucleases derived from SpCas9 are valuable tools for genome editing, but their wide applications are hampered by a lack of knowledge governing guide RNA (gRNA) activity. Here, we perform a genome-scale screen to measure gRNA acti...

Predicting CRISPR/Cas9-Induced Mutations for Precise Genome Editing.

Trends in biotechnology
SpCas9 creates blunt end cuts in the genome and generates random and unpredictable mutations through error-prone repair systems. However, a growing body of recent evidence points instead to Cas9-induced staggered end generation, nonrandomness of muta...

Prediction of activity and specificity of CRISPR-Cpf1 using convolutional deep learning neural networks.

BMC bioinformatics
BACKGROUND: CRISPR-Cpf1 has recently been reported as another RNA-guided endonuclease of class 2 CRISPR-Cas system, which expands the molecular biology toolkit for genome editing. However, most of the online tools and applications to date have been d...

Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning.

Scientific reports
Editing individual nucleotides is a crucial component for validating genomic disease association. It is currently hampered by CRISPR-Cas-mediated "base editing" being limited to certain nucleotide changes, and only achievable within a small window ar...

Prediction of CRISPR sgRNA Activity Using a Deep Convolutional Neural Network.

Journal of chemical information and modeling
The CRISPR-Cas9 system derived from adaptive immunity in bacteria and archaea has been developed into a powerful tool for genome engineering with wide-ranging applications. Optimizing single-guide RNA (sgRNA) design to improve efficiency of target cl...