The ease of programming CRISPR/Cas9 system for targeting a specific location within the genome has paved way for many clinical and industrial applications. However, its widespread use is still limited owing to its off-target effects. Though this off-...
BACKGROUND: CRISPR/Cas9 system, as the third-generation genome editing technology, has been widely applied in target gene repair and gene expression regulation. Selection of appropriate sgRNA can improve the on-target knockout efficacy of CRISPR/Cas9...
We evaluated SpCas9 activities at 12,832 target sequences using a high-throughput approach based on a human cell library containing single-guide RNA-encoding and target sequence pairs. Deep learning-based training on this large dataset of SpCas9-indu...
BACKGROUND: One of the main challenges for the CRISPR-Cas9 system is selecting optimal single-guide RNAs (sgRNAs). Recently, deep learning has enhanced sgRNA prediction in eukaryotes. However, the prokaryotic chromatin structure is different from euk...
The CRISPR-Cas9 system has become the most promising and versatile tool for genetic manipulation applications. Albeit the technology has been broadly adopted by both academic and pharmaceutic societies, the activity (on-target) and specificity (off-t...
Highly specific Cas9 nucleases derived from SpCas9 are valuable tools for genome editing, but their wide applications are hampered by a lack of knowledge governing guide RNA (gRNA) activity. Here, we perform a genome-scale screen to measure gRNA acti...
SpCas9 creates blunt end cuts in the genome and generates random and unpredictable mutations through error-prone repair systems. However, a growing body of recent evidence points instead to Cas9-induced staggered end generation, nonrandomness of muta...
BACKGROUND: CRISPR-Cpf1 has recently been reported as another RNA-guided endonuclease of class 2 CRISPR-Cas system, which expands the molecular biology toolkit for genome editing. However, most of the online tools and applications to date have been d...
Editing individual nucleotides is a crucial component for validating genomic disease association. It is currently hampered by CRISPR-Cas-mediated "base editing" being limited to certain nucleotide changes, and only achievable within a small window ar...
Journal of chemical information and modeling
Dec 7, 2018
The CRISPR-Cas9 system derived from adaptive immunity in bacteria and archaea has been developed into a powerful tool for genome engineering with wide-ranging applications. Optimizing single-guide RNA (sgRNA) design to improve efficiency of target cl...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.