AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Databases, Protein

Showing 211 to 220 of 698 articles

Clear Filters

Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism.

Proteins
Accurate prediction of peptide binding affinity to the major histocompatibility complex (MHC) proteins has the potential to design better therapeutic vaccines. Previous work has shown that pan-specific prediction algorithms can achieve better predict...

Ollivier Persistent Ricci Curvature-Based Machine Learning for the Protein-Ligand Binding Affinity Prediction.

Journal of chemical information and modeling
Efficient molecular featurization is one of the major issues for machine learning models in drug design. Here, we propose a persistent Ricci curvature (PRC), in particular, Ollivier PRC (OPRC), for the molecular featurization and feature engineering,...

AptaNet as a deep learning approach for aptamer-protein interaction prediction.

Scientific reports
Aptamers are short oligonucleotides (DNA/RNA) or peptide molecules that can selectively bind to their specific targets with high specificity and affinity. As a powerful new class of amino acid ligands, aptamers have high potentials in biosensing, the...

Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction.

Proteins
Deep learning has emerged as a revolutionary technology for protein residue-residue contact prediction since the 2012 CASP10 competition. Considerable advancements in the predictive power of the deep learning-based contact predictions have been achie...

Structural protein fold recognition based on secondary structure and evolutionary information using machine learning algorithms.

Computational biology and chemistry
Understanding the function of protein is conducive to research in advanced fields such as gene therapy of diseases, the development and design of new drugs, etc. The prerequisite for understanding the function of a protein is to determine its tertiar...

Systematic auditing is essential to debiasing machine learning in biology.

Communications biology
Biases in data used to train machine learning (ML) models can inflate their prediction performance and confound our understanding of how and what they learn. Although biases are common in biological data, systematic auditing of ML models to identify ...

Robust principal component analysis-based prediction of protein-protein interaction hot spots.

Proteins
Proteins often exert their function by binding to other cellular partners. The hot spots are key residues for protein-protein binding. Their identification may shed light on the impact of disease associated mutations on protein complexes and help des...

Enzyme Promiscuity Prediction Using Hierarchy-Informed Multi-Label Classification.

Bioinformatics (Oxford, England)
MOTIVATION: As experimental efforts are costly and time consuming, computational characterization of enzyme capabilities is an attractive alternative. We present and evaluate several machine-learning models to predict which of 983 distinct enzymes, a...

Classification and prediction of protein-protein interaction interface using machine learning algorithm.

Scientific reports
Structural insight of the protein-protein interaction (PPI) interface can provide knowledge about the kinetics, thermodynamics and molecular functions of the complex while elucidating its role in diseases and further enabling it as a potential therap...

ELASPIC2 (EL2): Combining Contextualized Language Models and Graph Neural Networks to Predict Effects of Mutations.

Journal of molecular biology
The ELASPIC web server allows users to evaluate the effect of mutations on protein folding and protein-protein interaction on a proteome-wide scale. It uses homology models of proteins and protein-protein interactions, which have been precalculated f...