AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Diabetic Retinopathy

Showing 41 to 50 of 441 articles

Clear Filters

Lesion classification and diabetic retinopathy grading by integrating softmax and pooling operators into vision transformer.

Frontiers in public health
INTRODUCTION: Diabetic retinopathy grading plays a vital role in the diagnosis and treatment of patients. In practice, this task mainly relies on manual inspection using human visual system. However, the human visual system-based screening process is...

Cost-effectiveness of AI-based diabetic retinopathy screening in nationwide health checkups and diabetes management in Japan: A modeling study.

Diabetes research and clinical practice
AIMS: We evaluated the cost-effectiveness of artificial intelligence (AI)-based diabetic retinopathy (DR) screening in Japan. This evaluation compared the simultaneous introduction of AI in nationwide health checkups, namely "specific health check-up...

A deep learning based model for diabetic retinopathy grading.

Scientific reports
Diabetic retinopathy stands as a leading cause of blindness among people. Manual examination of DR images is labor-intensive and prone to error. Existing methods to detect this disease often rely on handcrafted features which limit the adaptability a...

Identification of diabetic retinopathy lesions in fundus images by integrating CNN and vision mamba models.

PloS one
Diabetic retinopathy, a retinal disorder resulting from diabetes mellitus, is a prominent cause of visual degradation and loss among the global population. Therefore, the identification and classification of diabetic retinopathy are of utmost importa...

Optimising deep learning models for ophthalmological disorder classification.

Scientific reports
Fundus imaging, a technique for recording retinal structural components and anomalies, is essential for observing and identifying ophthalmological diseases. Disorders such as hypertension, glaucoma, and diabetic retinopathy are indicated by structura...

DAU-Net: a novel U-Net with dual attention for retinal vessel segmentation.

Biomedical physics & engineering express
In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped n...

Early Prediction of Cardio Vascular Disease (CVD) from Diabetic Retinopathy using improvised deep Belief Network (I-DBN) with Optimum feature selection technique.

BMC cardiovascular disorders
Cardio Vascular Disease (CVD) is one of the leading causes of mortality and it is estimated that 1 in 4 deaths happens due to it. The disease prevalence rate becomes higher since there is an inadequate system/model for predicting CVD at an earliest. ...

ResViT FusionNet Model: An explainable AI-driven approach for automated grading of diabetic retinopathy in retinal images.

Computers in biology and medicine
BACKGROUND AND OBJECTIVE: Diabetic Retinopathy (DR) is a serious diabetes complication that can cause blindness if not diagnosed in its early stages. Manual diagnosis by ophthalmologists is labor-intensive and time-consuming, particularly in overburd...

Estimating Visual Acuity With Spectacle Correction From Fundus Photos Using Artificial Intelligence.

JAMA network open
IMPORTANCE: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-correc...

Deep learning model for automatic detection of different types of microaneurysms in diabetic retinopathy.

Eye (London, England)
PURPOSE: This study aims to develop a deep-learning-based software capable of detecting and differentiating microaneurysms (MAs) as hyporeflective or hyperreflective on structural optical coherence tomography (OCT) images in patients with non-prolife...