AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Drug Carriers

Showing 11 to 20 of 55 articles

Clear Filters

Nose-to-Brain Drug Delivery and Physico-Chemical Properties of Nanosystems: Analysis and Correlation Studies of Data from Scientific Literature.

International journal of nanomedicine
BACKGROUND: In the last few decades, nose-to-brain delivery has been investigated as an alternative route to deliver molecules to the Central Nervous System (CNS), bypassing the Blood-Brain Barrier. The use of nanotechnological carriers to promote dr...

The drug loading capacity prediction and cytotoxicity analysis of metal-organic frameworks using stacking algorithms of machine learning.

International journal of pharmaceutics
Metal-organic frameworks (MOFs) have shown excellent performance in the field of drug delivery. Despite the synthesis of a vast array of MOFs exceeding 100,000 varieties, certain formulations have exhibited suboptimal performance characteristics. The...

Engineering mannose-functionalized nanostructured lipid carriers by sequential design using hybrid artificial intelligence tools.

Drug delivery and translational research
Nanostructured lipid carriers (NLCs) hold significant promise as drug delivery systems (DDS) owing to their small size and efficient drug-loading capabilities. Surface functionalization of NLCs can facilitate interaction with specific cell receptors,...

POxload: Machine Learning Estimates Drug Loadings of Polymeric Micelles.

Molecular pharmaceutics
Block copolymers, composed of poly(2-oxazoline)s and poly(2-oxazine)s, can serve as drug delivery systems; they form micelles that carry poorly water-soluble drugs. Many recent studies have investigated the effects of structural changes of the polyme...

Development of fucoidan/polyethyleneimine based sorafenib-loaded self-assembled nanoparticles with machine learning and DoE-ANN implementation: Optimization, characterization, and in-vitro assessment for the anticancer drug delivery.

International journal of biological macromolecules
This study aims to develop sorafenib-loaded self-assembled nanoparticles (SFB-SANPs) using the combined approach of artificial neural network and design of experiments (ANN-DoE) and to compare it with other machine learning (ML) models. The central c...

Machine Learning-Empowered Real-Time Acoustic Trapping: An Enabling Technique for Increasing MRI-Guided Microbubble Accumulation.

Sensors (Basel, Switzerland)
Acoustic trap, using ultrasound interference to ensnare bioparticles, has emerged as a versatile tool for life sciences due to its non-invasive nature. Bolstered by magnetic resonance imaging's advances in sensing acoustic interference and tracking d...

Transitioning the production of lipidic mesophase-based delivery systems from lab-scale to robust industrial manufacturing following a risk-based quality by design approach augmented by artificial intelligence.

Journal of colloid and interface science
Lipidic mesophase drug carriers have demonstrated the capacity to host and effectively deliver a wide range of active pharmaceutical ingredients, yet they have not been as extensively commercialized as other lipid-based products, such as liposomal de...

Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers.

Advanced materials (Deerfield Beach, Fla.)
The pioneering work on liposomes in the 1960s and subsequent research in controlled drug release systems significantly advances the development of nanocarriers (NCs) for drug delivery. This field is evolved to include a diverse array of nanocarriers ...

Optimising the production of PLGA nanoparticles by combining design of experiment and machine learning.

International journal of pharmaceutics
Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer in drug delivery and nanoparticle (NP) formulation due to its controlled drug release properties and safety profiles. Among the methods available for NP production, nanopreci...

Deep Learning for the Accurate Prediction of Triggered Drug Delivery.

IEEE transactions on nanobioscience
The need to mitigate the adverse effects of chemotherapy has driven the exploration of innovative drug delivery approaches. One emerging trend in cancer treatment is the utilization of Drug Delivery Systems (DDSs), facilitated by nanotechnology. Nano...