AIMC Topic: Drug Design

Clear Filters Showing 111 to 120 of 582 articles

CNSMolGen: A Bidirectional Recurrent Neural Network-Based Generative Model for De Novo Central Nervous System Drug Design.

Journal of chemical information and modeling
Central nervous system (CNS) drugs have had a significant impact on treating a wide range of neurodegenerative and psychiatric disorders. In recent years, deep learning-based generative models have shown great potential for accelerating drug discover...

An extensive review on lung cancer therapeutics using machine learning techniques: state-of-the-art and perspectives.

Journal of drug targeting
There are over 100 types of human cancer, accounting for millions of deaths every year. Lung cancer alone claims over 1.8 million lives per year and is expected to surpass 3.2 million by 2050, which underscores the urgent need for rapid drug developm...

Reactivities of acrylamide warheads toward cysteine targets: a QM/ML approach to covalent inhibitor design.

Journal of computer-aided molecular design
Covalent inhibition offers many advantages over non-covalent inhibition, but covalent warhead reactivity must be carefully balanced to maintain potency while avoiding unwanted side effects. While warhead reactivities are commonly measured with assays...

Recent advances in the development of DprE1 inhibitors using AI/CADD approaches.

Drug discovery today
Tuberculosis (TB) is a global lethal disease caused by Mycobacterium tuberculosis (Mtb). The flavoenzyme decaprenylphosphoryl-β-d-ribose 2'-oxidase (DprE1) plays a crucial part in the biosynthesis of lipoarabinomannan and arabinogalactan for the cell...

Unleashing the power of generative AI in drug discovery.

Drug discovery today
Artificial intelligence (AI) is revolutionizing drug discovery by enhancing precision, reducing timelines and costs, and enabling AI-driven computer-aided drug design. This review focuses on recent advancements in deep generative models (DGMs) for de...

HBCVTr: an end-to-end transformer with a deep neural network hybrid model for anti-HBV and HCV activity predictor from SMILES.

Scientific reports
Hepatitis B and C viruses (HBV and HCV) are significant causes of chronic liver diseases, with approximately 350 million infections globally. To accelerate the finding of effective treatment options, we introduce HBCVTr, a novel ligand-based drug des...

Prospective de novo drug design with deep interactome learning.

Nature communications
De novo drug design aims to generate molecules from scratch that possess specific chemical and pharmacological properties. We present a computational approach utilizing interactome-based deep learning for ligand- and structure-based generation of dru...

Vibrational spectroscopy coupled with machine learning sheds light on the cellular effects induced by rationally designed TLR4 agonists.

Talanta
In this work, we present the potential of Fourier transform infrared (FTIR) microspectroscopy to compare on whole cells, in an unbiased and untargeted way, the capacity of bacterial lipopolysaccharide (LPS) and two rationally designed molecules (FP20...

How exascale computing can shape drug design: A perspective from multiscale QM/MM molecular dynamics simulations and machine learning-aided enhanced sampling algorithms.

Current opinion in structural biology
Molecular simulations are an essential asset in the first steps of drug design campaigns. However, the requirement of high-throughput limits applications mainly to qualitative approaches with low computational cost, but also low accuracy. Unlocking t...

Machine Learning Exploration of the Relationship Between Drugs and the Blood-Brain Barrier: Guiding Molecular Modification.

Pharmaceutical research
OBJECTIVE: This study aimed to improve the efficiency of pharmacotherapy for CNS diseases by optimizing the ability of drug molecules to penetrate the Blood-Brain Barrier (BBB).