AIMC Topic: Evolution, Molecular

Clear Filters Showing 21 to 30 of 118 articles

The AI-driven Drug Design (AIDD) platform: an interactive multi-parameter optimization system integrating molecular evolution with physiologically based pharmacokinetic simulations.

Journal of computer-aided molecular design
Computer-aided drug design has advanced rapidly in recent years, and multiple instances of in silico designed molecules advancing to the clinic have demonstrated the contribution of this field to medicine. Properly designed and implemented platforms ...

Evolutionary-scale prediction of atomic-level protein structure with a language model.

Science (New York, N.Y.)
Recent advances in machine learning have leveraged evolutionary information in multiple sequence alignments to predict protein structure. We demonstrate direct inference of full atomic-level protein structure from primary sequence using a large langu...

Experimental exploration of a ribozyme neutral network using evolutionary algorithm and deep learning.

Nature communications
A neutral network connects all genotypes with equivalent phenotypes in a fitness landscape and plays an important role in the mutational robustness and evolvability of biomolecules. In contrast to earlier theoretical works, evidence of large neutral ...

Evolution and dispersal of mitochondrial DNA haplogroup U5 in Northern Europe: insights from an unsupervised learning approach to phylogeography.

BMC genomics
BACKGROUND: We combined an unsupervised learning methodology for analyzing mitogenome sequences with maximum likelihood (ML) phylogenetics to make detailed inferences about the evolution and diversification of mitochondrial DNA (mtDNA) haplogroup U5,...

Re-evaluating Deep Neural Networks for Phylogeny Estimation: The Issue of Taxon Sampling.

Journal of computational biology : a journal of computational molecular cell biology
Deep neural networks (DNNs) have been recently proposed for quartet tree phylogeny estimation. Here, we present a study evaluating recently trained DNNs in comparison to a collection of standard phylogeny estimation methods on a heterogeneous collect...

Computed structures of core eukaryotic protein complexes.

Science (New York, N.Y.)
Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take advantage of advances in proteome-wide amino acid coe...

Co-evolution based machine-learning for predicting functional interactions between human genes.

Nature communications
Over the next decade, more than a million eukaryotic species are expected to be fully sequenced. This has the potential to improve our understanding of genotype and phenotype crosstalk, gene function and interactions, and answer evolutionary question...

TwinCons: Conservation score for uncovering deep sequence similarity and divergence.

PLoS computational biology
We have developed the program TwinCons, to detect noisy signals of deep ancestry of proteins or nucleic acids. As input, the program uses a composite alignment containing pre-defined groups, and mathematically determines a 'cost' of transforming one ...

Disease variant prediction with deep generative models of evolutionary data.

Nature
Quantifying the pathogenicity of protein variants in human disease-related genes would have a marked effect on clinical decisions, yet the overwhelming majority (over 98%) of these variants still have unknown consequences. In principle, computational...