AIMC Topic: Evolution, Molecular

Clear Filters Showing 21 to 30 of 124 articles

Predicting hotspots for disease-causing single nucleotide variants using sequences-based coevolution, network analysis, and machine learning.

PloS one
To enable personalized medicine, it is important yet highly challenging to accurately predict disease-causing mutations in target proteins at high throughput. Previous computational methods have been developed using evolutionary information in combin...

Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning.

Journal of chemical information and modeling
L2 β-lactamases, serine-based class A β-lactamases expressed by , play a pivotal role in antimicrobial resistance (AMR). However, limited studies have been conducted on these important enzymes. To understand the coevolutionary dynamics of L2 β-lactam...

Essentiality, protein-protein interactions and evolutionary properties are key predictors for identifying cancer-associated genes using machine learning.

Scientific reports
The distinctive nature of cancer as a disease prompts an exploration of the special characteristics the genes implicated in cancer exhibit. The identification of cancer-associated genes and their characteristics is crucial to further our understandin...

Self-replicating artificial neural networks give rise to universal evolutionary dynamics.

PLoS computational biology
In evolutionary models, mutations are exogenously introduced by the modeler, rather than endogenously introduced by the replicator itself. We present a new deep-learning based computational model, the self-replicating artificial neural network (SeRAN...

The AI-driven Drug Design (AIDD) platform: an interactive multi-parameter optimization system integrating molecular evolution with physiologically based pharmacokinetic simulations.

Journal of computer-aided molecular design
Computer-aided drug design has advanced rapidly in recent years, and multiple instances of in silico designed molecules advancing to the clinic have demonstrated the contribution of this field to medicine. Properly designed and implemented platforms ...

Evolutionary-scale prediction of atomic-level protein structure with a language model.

Science (New York, N.Y.)
Recent advances in machine learning have leveraged evolutionary information in multiple sequence alignments to predict protein structure. We demonstrate direct inference of full atomic-level protein structure from primary sequence using a large langu...

Experimental exploration of a ribozyme neutral network using evolutionary algorithm and deep learning.

Nature communications
A neutral network connects all genotypes with equivalent phenotypes in a fitness landscape and plays an important role in the mutational robustness and evolvability of biomolecules. In contrast to earlier theoretical works, evidence of large neutral ...

Evolution and dispersal of mitochondrial DNA haplogroup U5 in Northern Europe: insights from an unsupervised learning approach to phylogeography.

BMC genomics
BACKGROUND: We combined an unsupervised learning methodology for analyzing mitogenome sequences with maximum likelihood (ML) phylogenetics to make detailed inferences about the evolution and diversification of mitochondrial DNA (mtDNA) haplogroup U5,...

Re-evaluating Deep Neural Networks for Phylogeny Estimation: The Issue of Taxon Sampling.

Journal of computational biology : a journal of computational molecular cell biology
Deep neural networks (DNNs) have been recently proposed for quartet tree phylogeny estimation. Here, we present a study evaluating recently trained DNNs in comparison to a collection of standard phylogeny estimation methods on a heterogeneous collect...