PURPOSE: Global indices of standard automated perimerty are insensitive to localized losses, while point-wise indices are sensitive but highly variable. Region-wise indices sit in between. This study introduces a machine learning-based index for glau...
PURPOSE: We sought to construct and evaluate a deep learning (DL) model to diagnose early glaucoma from spectral-domain optical coherence tomography (OCT) images.
PURPOSE: Previous approaches using deep learning (DL) algorithms to classify glaucomatous damage on fundus photographs have been limited by the requirement for human labeling of a reference training set. We propose a new approach using quantitative s...
PURPOSE: Anterior segment optical coherence tomography (AS-OCT) provides an objective imaging modality for visually identifying anterior segment structures. An automated detection system could assist ophthalmologists in interpreting AS-OCT images for...
PURPOSE: To develop and test deep learning classifiers that detect gonioscopic angle closure and primary angle closure disease (PACD) based on fully automated analysis of anterior segment OCT (AS-OCT) images.
PURPOSE: To compare the diagnostic performance of human gradings vs predictions provided by a machine-to-machine (M2M) deep learning (DL) algorithm trained to quantify retinal nerve fiber layer (RNFL) damage on fundus photographs.