AIMC Topic: Infant, Premature

Clear Filters Showing 21 to 30 of 103 articles

Risk factors for the time to development of retinopathy of prematurity in premature infants in Iran: a machine learning approach.

BMC ophthalmology
BACKGROUND: Retinopathy of prematurity (ROP), is a preventable leading cause of blindness in infants and is a condition in which the immature retina experiences abnormal blood vessel growth. The development of ROP is multifactorial; nevertheless, the...

Combining artificial intelligence and conventional statistics to predict bronchopulmonary dysplasia in very preterm infants using routinely collected clinical variables.

Pediatric pulmonology
BACKGROUND: Prematurity is the strongest predictor of bronchopulmonary dysplasia (BPD). Most previous studies investigated additional risk factors by conventional statistics, while the few studies applying artificial intelligence, and specifically ma...

Host-derived protein profiles of human neonatal meconium across gestational ages.

Nature communications
Meconium, a non-invasive biomaterial reflecting prenatal substance accumulation, could provide valuable insights into neonatal health. However, the comprehensive protein profile of meconium across gestational ages remains unclear. Here, we conducted ...

Automated detection of type 1 ROP, type 2 ROP and A-ROP based on deep learning.

Eye (London, England)
PURPOSE: To provide automatic detection of Type 1 retinopathy of prematurity (ROP), Type 2 ROP, and A-ROP by deep learning-based analysis of fundus images obtained by clinical examination using convolutional neural networks.

Use of an Artificial Intelligence-Generated Vascular Severity Score Improved Plus Disease Diagnosis in Retinopathy of Prematurity.

Ophthalmology
PURPOSE: To evaluate whether providing clinicians with an artificial intelligence (AI)-based vascular severity score (VSS) improves consistency in the diagnosis of plus disease in retinopathy of prematurity (ROP).

A fundus image dataset for intelligent retinopathy of prematurity system.

Scientific data
Image-based artificial intelligence (AI) systems stand as the major modality for evaluating ophthalmic conditions. However, most of the currently available AI systems are designed for experimental research using single-central datasets. Most of them ...

Machine learning model with output correction: Towards reliable bradycardia detection in neonates.

Computers in biology and medicine
Bradycardia is a commonly occurring condition in premature infants, often causing serious consequences and cardiovascular complications. Reliable and accurate detection of bradycardia events is pivotal for timely intervention and effective treatment....

Predicting severe intraventricular hemorrhage or early death using machine learning algorithms in VLBWI of the Korean Neonatal Network Database.

Scientific reports
Severe intraventricular hemorrhage (IVH) in premature infants can lead to serious neurological complications. This retrospective cohort study used the Korean Neonatal Network (KNN) dataset to develop prediction models for severe IVH or early death in...

Predicting early mortality and severe intraventricular hemorrhage in very-low birth weight preterm infants: a nationwide, multicenter study using machine learning.

Scientific reports
Our aim was to develop a machine learning-based predictor for early mortality and severe intraventricular hemorrhage (IVH) in very-low birth weight (VLBW) preterm infants in Taiwan. We collected retrospective data from VLBW infants, dividing them int...

A comprehensive study on machine learning models combining with oversampling for bronchopulmonary dysplasia-associated pulmonary hypertension in very preterm infants.

Respiratory research
BACKGROUND: Bronchopulmonary dysplasia-associated pulmonary hypertension (BPD-PH) remains a devastating clinical complication seriously affecting the therapeutic outcome of preterm infants. Hence, early prevention and timely diagnosis prior to pathol...