AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Retinopathy of Prematurity

Showing 1 to 10 of 55 articles

Clear Filters

Assessing the Responses of Large Language Models (ChatGPT-4, Claude 3, Gemini, and Microsoft Copilot) to Frequently Asked Questions in Retinopathy of Prematurity: A Study on Readability and Appropriateness.

Journal of pediatric ophthalmology and strabismus
PURPOSE: To assess the appropriateness and readability of responses provided by four large language models (LLMs) (ChatGPT-4, Claude 3, Gemini, and Microsoft Copilot) to parents' queries pertaining to retinopathy of prematurity (ROP).

Automated detection of type 1 ROP, type 2 ROP and A-ROP based on deep learning.

Eye (London, England)
PURPOSE: To provide automatic detection of Type 1 retinopathy of prematurity (ROP), Type 2 ROP, and A-ROP by deep learning-based analysis of fundus images obtained by clinical examination using convolutional neural networks.

Assessing spectral effectiveness in color fundus photography for deep learning classification of retinopathy of prematurity.

Journal of biomedical optics
SIGNIFICANCE: Retinopathy of prematurity (ROP) poses a significant global threat to childhood vision, necessitating effective screening strategies. This study addresses the impact of color channels in fundus imaging on ROP diagnosis, emphasizing the ...

Use of an Artificial Intelligence-Generated Vascular Severity Score Improved Plus Disease Diagnosis in Retinopathy of Prematurity.

Ophthalmology
PURPOSE: To evaluate whether providing clinicians with an artificial intelligence (AI)-based vascular severity score (VSS) improves consistency in the diagnosis of plus disease in retinopathy of prematurity (ROP).

Risk factors for the time to development of retinopathy of prematurity in premature infants in Iran: a machine learning approach.

BMC ophthalmology
BACKGROUND: Retinopathy of prematurity (ROP), is a preventable leading cause of blindness in infants and is a condition in which the immature retina experiences abnormal blood vessel growth. The development of ROP is multifactorial; nevertheless, the...

Prediction models for retinopathy of prematurity occurrence based on artificial neural network.

BMC ophthalmology
INTRODUCTION: Early prediction and timely treatment are essential for minimizing the risk of visual loss or blindness of retinopathy of prematurity, emphasizing the importance of ROP screening in clinical routine.

Computer-aided diagnosis of early-stage Retinopathy of Prematurity in neonatal fundus images using artificial intelligence.

Biomedical physics & engineering express
Retinopathy of Prematurity (ROP) is a retinal disorder affecting preterm babies, which can lead to permanent blindness without treatment. Early-stage ROP diagnosis is vital in providing optimal therapy for the neonates. The proposed study predicts ea...

AI-Enabled Screening for Retinopathy of Prematurity in Low-Resource Settings.

JAMA network open
IMPORTANCE: Retinopathy of prematurity (ROP) is the leading cause of preventable childhood blindness worldwide. If detected and treated early, ROP-associated blindness is preventable; however, identifying patients who might respond to treatment requi...

Prediction of Reactivation After Antivascular Endothelial Growth Factor Monotherapy for Retinopathy of Prematurity: Multimodal Machine Learning Model Study.

Journal of medical Internet research
BACKGROUND: Retinopathy of prematurity (ROP) is the leading preventable cause of childhood blindness. A timely intravitreal injection of antivascular endothelial growth factor (anti-VEGF) is required to prevent retinal detachment with consequent visi...

Prediction of retinopathy of prematurity development and treatment need with machine learning models.

BMC ophthalmology
BACKGROUND: To evaluate the effectiveness of machine learning (ML) models in predicting the occurrence of retinopathy of prematurity (ROP) and treatment need.