AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Intracranial Aneurysm

Showing 11 to 20 of 123 articles

Clear Filters

Letter to Editor Regarding "Use of Artificial Intelligence Software to Detect Intracranial Aneurysms: A Comprehensive Stroke Center Experience".

World neurosurgery
Artificial intelligence (AI) is increasingly significant in neurosurgery, enhancing differential diagnosis, preoperative evaluation, and surgical precision. A recent study in World Neurosurgery evaluated AI's role in aneurysm detection, comparing con...

Machine Learning Algorithms to Predict the Risk of Rupture of Intracranial Aneurysms: a Systematic Review.

Clinical neuroradiology
PURPOSE: Subarachnoid haemorrhage is a potentially fatal consequence of intracranial aneurysm rupture, however, it is difficult to predict if aneurysms will rupture. Prophylactic treatment of an intracranial aneurysm also involves risk, hence identif...

Diagnostic and predictive value of radiomics-based machine learning for intracranial aneurysm rupture status: a systematic review and meta-analysis.

Neurosurgical review
Currently, the growing interest in radiomics within the clinical practice has prompted some researchers to differentiate the rupture status of intracranial aneurysm (IA) by developing radiomics-based machine learning models. However, systematic evide...

Comprehensive Management of Intracranial Aneurysms Using Artificial Intelligence: An Overview.

World neurosurgery
Intracranial aneurysms (IAs), an asymptomatic vascular lesion, are becoming increasingly common as imaging technology progresses. Subarachnoid hemorrhage from IAs rupture entails a substantial risk of mortality or severe disability. The early detecti...

Deep learning-assistance significantly increases the detection sensitivity of neurosurgery residents for intracranial aneurysms in subarachnoid hemorrhage.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
OBJECTIVE: The purpose of this study was to evaluate the effectiveness of a deep learning model (DLM) in improving the sensitivity of neurosurgery residents to detect intracranial aneurysms on CT angiography (CTA) in patients with aneurysmal subarach...

Assessment of the stability of intracranial aneurysms using a deep learning model based on computed tomography angiography.

La Radiologia medica
PURPOSE: Assessment of the stability of intracranial aneurysms is important in the clinic but remains challenging. The aim of this study was to construct a deep learning model (DLM) to identify unstable aneurysms on computed tomography angiography (C...

Volumetric Artificial Intelligence Analysis of Prerupture and Postrupture Cerebral Aneurysms: Assessment of Morphologic Change.

World neurosurgery
BACKGROUND: Cerebral aneurysm rupture is a major cause of potential years of life lost. Research on rupture risk has often compared unruptured and ruptured aneurysms, with the implicit assumption that the rupture event does not significantly change a...

Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography.

Radiology. Artificial intelligence
Purpose To develop a deep learning model for the morphologic measurement of unruptured intracranial aneurysms (UIAs) based on CT angiography (CTA) data and validate its performance using a multicenter dataset. Materials and Methods In this retrospect...

Accuracy of an nnUNet Neural Network for the Automatic Segmentation of Intracranial Aneurysms, Their Parent Vessels, and Major Cerebral Arteries from MRI-TOF.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: The automatic recognition of intracraial aneurysms by means of machine-learning algorithms represents a new frontier for diagnostic and therapeutic goals. Yet, the current algorithms focus solely on the aneurysms and not on th...