AIMC Topic: Intracranial Aneurysm

Clear Filters Showing 11 to 20 of 132 articles

Development and Validation of Machine Learning-Based Model for Hospital Length of Stay in Patients Undergoing Endovascular Interventional Embolization for Intracranial Aneurysms.

World neurosurgery
OBJECTIVE: This study was to explore the factors associated with prolonged hospital length of stay (LOS) in patients with intracranial aneurysms (IAs) undergoing endovascular interventional embolization and construct prediction model machine learning...

Evaluating a clinically available artificial intelligence model for intracranial aneurysm detection: a multi-reader study and algorithmic audit.

Neuroradiology
PURPOSE: We aimed to validate a clinically available artificial intelligence (AI) model to assist general radiologists in the detection of intracranial aneurysm (IA) in a multi-reader multi-case (MRMC) study, and to explore its performance in routine...

Patch-Wise Deep Learning Method for Intracranial Stenosis and Aneurysm Detection-the Tromsø Study.

Neuroinformatics
Intracranial atherosclerotic stenosis (ICAS) and intracranial aneurysms are prevalent conditions in the cerebrovascular system. ICAS causes a narrowing of the arterial lumen, thereby restricting blood flow, while aneurysms involve the ballooning of b...

Volumetric Artificial Intelligence Analysis of Prerupture and Postrupture Cerebral Aneurysms: Assessment of Morphologic Change.

World neurosurgery
BACKGROUND: Cerebral aneurysm rupture is a major cause of potential years of life lost. Research on rupture risk has often compared unruptured and ruptured aneurysms, with the implicit assumption that the rupture event does not significantly change a...

Deep learning-assistance significantly increases the detection sensitivity of neurosurgery residents for intracranial aneurysms in subarachnoid hemorrhage.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
OBJECTIVE: The purpose of this study was to evaluate the effectiveness of a deep learning model (DLM) in improving the sensitivity of neurosurgery residents to detect intracranial aneurysms on CT angiography (CTA) in patients with aneurysmal subarach...

Assessment of the stability of intracranial aneurysms using a deep learning model based on computed tomography angiography.

La Radiologia medica
PURPOSE: Assessment of the stability of intracranial aneurysms is important in the clinic but remains challenging. The aim of this study was to construct a deep learning model (DLM) to identify unstable aneurysms on computed tomography angiography (C...

Comprehensive Management of Intracranial Aneurysms Using Artificial Intelligence: An Overview.

World neurosurgery
Intracranial aneurysms (IAs), an asymptomatic vascular lesion, are becoming increasingly common as imaging technology progresses. Subarachnoid hemorrhage from IAs rupture entails a substantial risk of mortality or severe disability. The early detecti...

Aneurysmal formation of periventricular anastomosis is associated with collateral development of Moyamoya disease and its rupture portends poor prognosis: detailed analysis by multivariate statistical and machine learning approaches.

Neurosurgical review
Periventricular anastomosis (PA) is the characteristic collateral network in Moyamoya disease (MMD). However, PA aneurysms are rare, resulting in limited knowledge of their clinical significance. We aimed to elucidate the associated factors and clini...

Machine Learning Algorithms to Predict the Risk of Rupture of Intracranial Aneurysms: a Systematic Review.

Clinical neuroradiology
PURPOSE: Subarachnoid haemorrhage is a potentially fatal consequence of intracranial aneurysm rupture, however, it is difficult to predict if aneurysms will rupture. Prophylactic treatment of an intracranial aneurysm also involves risk, hence identif...