PURPOSE: The currently used measures of retinal function are limited by being subjective, nonlocalized, or taxing for patients. To address these limitations, we sought to develop and evaluate a deep learning (DL) method to automatically predict the f...
PURPOSE: To validate the generalizability of a deep learning system (DLS) that detects diabetic macular edema (DME) from 2-dimensional color fundus photographs (CFP), for which the reference standard for retinal thickness and fluid presence is derive...
Diabetic retinopathy (DR) is an eye disease that alters the blood vessels of a person suffering from diabetes. Diabetic macular edema (DME) occurs when DR affects the macula, which causes fluid accumulation in the macula. Efficient screening systems ...
OBJECTIVE: Diabetic macular edema (DME) is the primary cause of vision loss among individuals with diabetes mellitus (DM). We developed, validated, and tested a deep learning (DL) system for classifying DME using images from three common commercially...
An efficient automatic decision support system for detection of retinal disorders is important and is the need of the hour. Optical Coherence Tomography (OCT) is the current imaging modality for the early detection of retinal disorders non-invasively...
OBJECTIVES: To present and validate a deep ensemble algorithm to detect diabetic retinopathy (DR) and diabetic macular oedema (DMO) using retinal fundus images.
PURPOSE: To meet the demands imposed by the continuing growth of the Age-related macular degeneration (AMD) patient population, automation of follow-ups by detecting retinal oedema using deep learning might be a viable approach. However, preparing an...
PURPOSE: To assess the potential of machine learning to predict low and high treatment demand in real life in patients with neovascular age-related macular degeneration (nAMD), retinal vein occlusion (RVO), and diabetic macular edema (DME) treated ac...
PURPOSE: To evaluate the effect of intravitreal injection of ranibizumab (IVR) on subfoveal choroidal thickness (SFCT) and its relationship with central macular thickness (CMT) and best-corrected visual acuity (BCVA) changes in eyes with center-invol...
OBJECTIVE: To evaluate diabetic retinopathy (DR) screening via deep learning (DL) and trained human graders (HG) in a longitudinal cohort, as case spectrum shifts based on treatment referral and new-onset DR.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.