PURPOSE: Retinal vasculitis (RV) is characterised by retinal vascular leakage, occlusion or both on fluorescein angiography (FA). There is no standard scheme available to segment RV features. We aimed to develop a deep learning model to segment both ...
The non-perfusion area (NPA) of the retina is an important indicator in the visual prognosis of patients with branch retinal vein occlusion (BRVO). However, the current evaluation method of NPA, fluorescein angiography (FA), is invasive and burdensom...
Hyperlipidemia has many ocular manifestations, the most prevalent being retinal vascular occlusion. Hyperlipidemic lesions and occlusions to the vessels supplying the retina result in permanent blindness, necessitating prompt detection and treatment....
Deep learning techniques were used in ophthalmology to develop artificial intelligence (AI) models for predicting the short-term effectiveness of anti-VEGF therapy in patients with macular edema secondary to branch retinal vein occlusion (BRVO-ME). 1...
Branch retinal vein occlusion (BRVO) is the most prevalent retinal vascular disease that constitutes a threat to vision due to increased venous pressure caused by venous effluent in the space, leading to impaired visual function. Optical Coherence To...
Branch retinal vein occlusion (BRVO) is a leading cause of visual impairment in working-age individuals, though predicting its occurrence from retinal vascular features alone remains challenging. We developed a deep learning model to predict BRVO bas...
BMC medical informatics and decision making
40055729
BACKGROUND: Retinal vein occlusion (RVO) is a leading cause of vision loss globally. Routine health check-up data-including demographic information, medical history, and laboratory test results-are commonly utilized in clinical settings for disease r...
Accurate prediction of post-treatment visual acuity in macular edema secondary to retinal vein occlusion (RVO-ME) is critical for optimizing anti-VEGF therapy and improving clinical outcomes. While machine learning (ML) has shown promise in ophthalmi...
PURPOSE: To test the diagnostic performance of an artificial intelligence algorithm for detecting and segmenting macular neovascularization (MNV) with OCT and OCT angiography (OCTA) in eyes with macular edema from various diagnoses.