OBJECTIVE: The aim of this study was to assess the utility of the combined use of 3D wheel sampling and deep learning-based reconstruction (DLR) for intracranial high-resolution (HR)-time-of-flight (TOF)-magnetic resonance angiography (MRA) at 3 T.
Radiological imaging to examine intracranial blood vessels is critical for preoperative planning and postoperative follow-up. Automated segmentation of cerebrovascular anatomy from Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) can provide r...
Segmentation of cerebral vasculature on MR vascular images is of great significance for clinical application and research. However, the existing cerebrovascular segmentation approaches are limited due to insufficient image contrast and complicated al...
Medical & biological engineering & computing
38802608
Three-dimensional vessel model reconstruction from patient-specific magnetic resonance angiography (MRA) images often requires some manual maneuvers. This study aimed to establish the deep learning (DL)-based method for vessel model reconstruction. T...
International journal of medical informatics
38761459
PURPOSE: To evaluate the diagnostic efficacy of a developed artificial intelligence (AI) platform incorporating deep learning algorithms for the automated detection of intracranial aneurysms in time-of-flight (TOF) magnetic resonance angiography (MRA...
OBJECTIVE: Accurate nidus segmentation and quantification have long been challenging but important tasks in the clinical management of Cerebral Arteriovenous Malformation (CAVM). However, there are still dilemmas in nidus segmentation, such as diffic...
PURPOSE: To develop a new MR coronary angiography (MRCA) technique by employing a zigzag fan-shaped centric k-k k-space trajectory combined with high-resolution deep learning reconstruction (HR-DLR).
BACKGROUND: The detection and management of intracranial aneurysms (IAs) are vital to prevent life-threatening complications like subarachnoid hemorrhage (SAH). Artificial Intelligence (AI) can analyze medical images, like CTA or MRA, spotting nuance...
BACKGROUND: The natural history of intracranial dural arteriovenous fistula (DAVF) is variable and early diagnosis is crucial in order to positively impact the clinical course of aggressive DAVF. Artificial intelligence (AI) based techniques can be p...
BACKGROUND AND PURPOSE: Intracranial vessel wall imaging is technically challenging to implement, given the simultaneous requirements of high spatial resolution, excellent blood and CSF signal suppression, and clinically acceptable gradient times. He...