The aim of this study was to develop an auto-segmentation algorithm for mandibular condyle using the 3D U-Net and perform a stress test to determine the optimal dataset size for achieving clinically acceptable accuracy. 234 cone-beam computed tomogra...
OBJECTIVE: Quantitative analysis of the volume and shape of the temporomandibular joint (TMJ) using cone-beam computed tomography (CBCT) requires accurate segmentation of the mandibular condyles and the glenoid fossae. This study aimed to develop and...
Characteristics of the mandible structures have been relevant in anthropological and forensic studies for sex prediction. This study aims to evaluate the coronoid process, condyle, and sigmoid notch patterns in sex prediction through supervised machi...
OBJECTIVE: The present study aimed to assess the consistencies and performances of deep learning (DL) models in the diagnosis of condylar osteoarthritis (OA) among patients with dentofacial deformities using panoramic temporomandibular joint (TMJ) pr...
Temporomandibular joint disorders are prevalent causes of orofacial discomfort. Diagnosis predominantly relies on assessing the configuration and positions of temporomandibular joint components in magnetic resonance images. The complex anatomy of the...
OBJECTIVES: In orthognatic surgery, one of the primary determinants for reliable three-dimensional virtual surgery planning (3D VSP) and an accurate transfer of 3D VSP to the patient in the operation room is the condylar seating. Incorrectly seated c...
OBJECTIVES: To develop a deep learning-based automatic segmentation method for cortex and marrow in mandibular condyle on cone-beam computed tomography (CBCT) images and explore its clinical application.
OBJECTIVE: This retrospective study aimed to evaluate morphometric changes in mandibular condyles of patients with skeletal Class III malocclusion following two-jaw orthognathic surgery planned using virtual surgical planning (VSP) and analysed with ...
BACKGROUND: Temporomandibular joint (TMJ) disorders are a significant cause of orofacial pain. Artificial intelligence (AI) has been successfully applied to other imaging modalities but remains underexplored in ultrasonographic evaluations of TMJ.
BACKGROUND: Analyzing the morphological growth changes upon mandibular advancement between Twin Block (TB) and Functional Regulator II (FR2) in Class II patients involves measuring the condylar and mandibular changes in terms of linear and volumetric...