AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Meningioma

Showing 41 to 50 of 75 articles

Clear Filters

A deep learning radiomics model may help to improve the prediction performance of preoperative grading in meningioma.

Neuroradiology
PURPOSE: This study aimed to investigate the clinical usefulness of the enhanced-T1WI-based deep learning radiomics model (DLRM) in differentiating low- and high-grade meningiomas.

A deep learning radiomics analysis for identifying sinus invasion in patients with meningioma before operation using tumor and peritumoral regions.

European journal of radiology
BACKGROUND: For patients with meningioma, surgical procedures are different because of the status of sinus invasion. However, there is still no suitable technique to identify the status of sinus invasion in patients with meningiomas. We aimed to buil...

Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Accurate and rapid measurement of the MRI volume of meningiomas is essential in clinical practice to determine the growth rate of the tumor. Imperfect automation and disappointing performance for small meningiomas of previous automated vo...

Deep neural networks allow expert-level brain meningioma segmentation and present potential for improvement of clinical practice.

Scientific reports
Accurate brain meningioma segmentation and volumetric assessment are critical for serial patient follow-up, surgical planning and monitoring response to treatment. Current gold standard of manual labeling is a time-consuming process, subject to inter...

MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques.

BMC medical informatics and decision making
BACKGROUND: Detecting brain tumors in their early stages is crucial. Brain tumors are classified by biopsy, which can only be performed through definitive brain surgery. Computational intelligence-oriented techniques can help physicians identify and ...

Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning.

European radiology
OBJECTIVES: To establish a robust interpretable multiparametric deep learning (DL) model for automatic noninvasive grading of meningiomas along with segmentation.

Federated Learning: A Cross-Institutional Feasibility Study of Deep Learning Based Intracranial Tumor Delineation Framework for Stereotactic Radiosurgery.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Deep learning-based segmentation algorithms usually required large or multi-institute data sets to improve the performance and ability of generalization. However, protecting patient privacy is a key concern in the multi-institutional stud...